
Creative Logic Programming

Simon Colton
sgc@doc.ic.ac.uk

Imperial College, London
180 Queens Gate, London, SW7 2BZ. United Kingdom

Abstract

The standard machine learning paradigm is to find
something that users know they are looking for,
with the discovered artefact defined in terms of
given background knowledge. We propose to ex-
tend this to automating the task of finding novel and
interesting information – also based on the back-
ground knowledge – that the users do not know they
are looking for. We sketch various methods for in-
troducing knowledge to a knowledge base which
are inspired by notions from the study of creativ-
ity. We attempt to determine situations where it
is possible to project certain words from the cre-
ativity literature onto an agent (human, machine or
otherwise), as it undertakes the task of adding in-
formation to a knowledge base. This study has en-
abled us to suggest a road-map for the development
of creative logic programming systems, which ex-
tends inductive logic programming approaches to
discovery tasks.

1 Introduction
An accepted view of machine learning is given in [24]:

An [agent] is said to learn from experience E with
respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as mea-
sured by P, improves with experience E.

Usually, the tasks in T are prediction tasks. That is, ma-
chine learning programs are given some background infor-
mation, and a categorisation of a set of examples. They are
then required to determine a method for predicting into which
category an unseen example should be placed. The learned
method will normally involve aspects of the background in-
formation (experience), and may be any number of things: a
classifying concept, a set of rules, or a mathematical function
such as a neural network. In this general setting, if we think
of the task as learning a target function, then it is clear that,
in some respects, while the exact details of the target are not
known, at least something is known about it: the way it cate-
gorises the given examples. Hence, in many respects, the user
knows what they are looking for, but they do not know what
it looks like.

As an example, suppose the Progol [26] machine learning
program was given a single background concept: of one in-
teger dividing another. Suppose also that it is given positive
examples of the target concept as 1, 4 and 9 and negative ex-
amples of the target concept as 2, 3, 5, 6, 7 and 8. It would
very easily learn the concept of square numbers to explain
why 1, 4 and 9 are positive examples and the other numbers
are negative. This is an illustrative example where the user
knew what they were looking for, and so it was possible to
use a goal-based approach such as Inductive Logic Program-
ming (ILP) which underpins Progol, as discussed in [25]. ILP
systems specifically designed for this task are said to be per-
forming predictive ILP.

We are interested here in a more general task than pre-
diction, namely, to start with a given background knowledge
base and use this as a seed from which to build a larger knowl-
edge base. This will be done in such a way that the learned
knowledge base will contain a high proportion of information
which is both novel and interesting to the user. In this way,
we want to extend the task of finding things the user knew
they were looking for into the task of finding novel and inter-
esting things (facts, concepts, artefacts, etc.) that the user did
not know they were looking for. ILP systems such as CLAU-
DIEN [14] and WARMR [15] perform what is known as de-
scriptive ILP. These aim to discover association rules, which
relate predicates from the background knowledge. Hence,
these are more likely to find something the user didn’t know
they were looking for than predictive ILP systems. However,
the user often specifies a language bias which effectively re-
stricts the format of the rules which can be found. So, the
user may not know what, if any, task the rules found by the
system will solve, but they will know the format the rules will
take. Hence, these systems still have some way to go before
being able to truly approach the kinds of discovery tasks we
are proposing.

The HR system [9] also undertakes descriptive ILP, but its
output is a theory, which will contain concepts (classification
rules in ILP terminology), conjectures (association rules),
constants and proofs which were not present in the back-
ground knowledge. HR has mostly been used for applica-
tions in mathematical domains, but we have recently applied
it to other scientific datasets, in particular the mutagenesis
data [8]. HR differs in many ways with other predictive ILP
systems, most notably because it interacts with third party



systems, including automated theorem provers such as Otter
[20], model generators such as MACE [21] and computer al-
gebra systems such as Maple [1]. HR has been used for pre-
diction tasks, such as those described in [10] and [22]. How-
ever, it is has mainly been designed to perform exploration
of a domain in order to build up a theory, i.e., to find facts,
examples, hypotheses, etc., about the background knowledge
that the user did not necessarily know they were looking for.

For instance, given only the divisors concept as back-
ground information, HR invents concepts such as refactorable
numbers, which are such that the number of divisors is itself
a divisor. Moreover, HR finds interesting conjectures about
these new concepts: for example, HR makes the conjecture
that odd refactorable numbers are always square numbers, a
fact we prove in [3]. As another example, in experiments
described in [9], we gave HR just the axioms of various alge-
braic domains, which usually amounted to just two or three
lines in a background knowledge file. HR then used MACE
to generate models for the axioms, and used Otter to prove
theorems about them, which led to HR forming rich theories
about the algebraic structures. In a later application, a similar
approach was used to discover implied constraints in order
to reformulate constraint satisfaction specifications for quasi-
group existence problems [11].

Of course, exploration such as that undertaken by HR may
lead to very dull information being discovered. Hence the aim
of automated theory formation, as expounded in [9], is to find
novel, interesting facts about the domain concepts supplied
by the user. This is exactly how we have phrased the exten-
sion of machine learning tasks above. However, we make
no claim that the HR system covers every possible way in
which an agent could build a knowledge base from a seed
of background information. Indeed, the work presented here
shows that the techniques used by HR are only a small part
of a much larger set of techniques which it could potentially
employ. However, we do take HR as a role model in two re-
spects. Firstly, it is able to discover different types of artefact:
as we’ve mentioned, the interesting output from a theory for-
mation session might be a concept such as refactorable num-
bers, or a rule (conjecture) such as odd refactorable numbers
being square or an example such as 2, which is the only prime
refactorable number. Secondly, HR combines various forms
of reasoning. It uses invention and induction itself to produce
concept definitions and make hypotheses about them. It also
uses deduction and calculation when it appeals to Otter and
MACE to prove/disprove a hypothesis that it has made. With
an extension described in [12], HR is also able to use abduc-
tion to fix faulty hypotheses.

Note that standard prediction tasks fit into our extended
framework. In this case, while the agent may come into con-
tact with a large number of concepts and hypotheses as it
searches, the output is usually only a single way of complet-
ing the precise task set down, such as a single neural network,
or a small set of rules governing the prediction task. The in-
terestingness of the learned knowledge is tested with respect
to the original task, and the new knowledge may be uninter-
esting if it has a low predictive accuracy when assessed by
a method such as 10-fold cross validation. Also, knowledge
learned for prediction tasks may be uninteresting if it can be

shown to be overfitting (memorising) the data, as described
in [24]. Note that boosting machine learning approaches aim
to combine many learned prediction methods in order to bet-
ter achieve prediction of unseen examples [28]. However, the
combined method is still assessed in terms of overfitting and
accuracy with respect to the single prediction task.

Our extended task specification covers other intelligent
tasks which may be of interest to a user who has some data.
Such tasks include the generation of puzzles [7], which we
argue in [4] is difficult for a goal-based machine learning ap-
proach. Such tasks also include “proactive” rather than “reac-
tive” machine learning. Proactive machine learning involves
learning possible answers to machine learning questions be-
fore the details of the actual question are given. For instance,
in [5], we propose the following task, based on Michalski’s
train problem [23]: given a set of 20 trains – described us-
ing concepts such as carriages, contents of carriages, wheels,
etc., – and given, say, an hour, prepare to answer with no
hesitation a classification task. The classification task will
involve being told that a particular set of 10 trains are go-
ing East and 10 trains are going West, and the question is to
determine why the trains are going in their respective direc-
tions. As the 10 Eastbound trains are not known beforehand,
the learning agent has to invent and solve possible classifica-
tion tasks in the hour it is given, in preparation for the actual
test supplied later. This is therefore a fundamentally different
problem to the original trains problem, which is a standard
classification/prediction task.

In the remainder of the paper, we will look at various pos-
sible methods by which an agent (human, machine or other-
wise) could add information to a knowledge base in order to
possibly identify something the user did not know they were
looking for. Our inspiration comes from notions of creativity:
we will look at a word or phrase (such as deduction, induc-
tion, serendipity) and attempt to give at least one situation
where it would be possible to project the word/phrase onto
the actions taken by an agent to add new information to the
growing knowledge base. We hope to do so in such a way
that it is difficult to argue that the notion does not apply to an
agent performing in the way prescribed. For example, if we
look at the word “deduction”, often mentioned in creativity
studies, it is uncontroversial to say that an automated theorem
prover using the Modus Ponens rule of inference to generate
new knowledge has reasoned deductively.

Note that we do not intend to say that only if an agent per-
forms in a certain way can a particular notion associated with
creative behaviour be projected onto it. Rather, we want to
be certain that we have identified a situation in which the
notion applies. It is for this reason that we have chosen to
undertake this study via a cut-down representation language
such as logic programs. By giving particular simple instances
where the amount and type of information is clear, we hope
to approach the study of creativity from the bottom up. This
is in contrast with other approaches to the study of creativity,
which have approached from the top-down, by characterising
various thought processes, especially in ad-hoc case studies,
such as Kekule’s discovery of the benzene-ring structure [2].
We hope that our bottom-up approach will compliment these
top-down approaches and go some way to de-mystifying vari-



ous notions from the study of creativity, bringing a more con-
crete understanding of this topic.

In section
�
2, we present some techniques for introducing

new knowledge to a knowledge base. The techniques are pre-
sented as situations where an agent takes existing knowledge,
represented as logic programs, and generates new knowledge.
Moreover, the techniques are inspired from notions arising
from the study of creativity, and the situations are designed
so that it is possible to project certain words from the creativ-
ity literature (induction, serendipity, etc.) onto the agent as
it carries out the technique. Note that it is not our intention
to provide acute details of how new knowledge may be intro-
duced. This is planned for the next stage of our study into
creative logic programming, where we analyse various tech-
niques such as ILP, resolution proving, constraint satisfaction,
etc. in order to interpret them within the same framework.
Given that we intend this framework to use logic programs as
its underlying representation, it is important that we use logic
programs in our study here, so that we maintain consistency.

In
�
3, we supply a worked example – the mutilated

checkerboard problem – and give four scenarios in which a
program might use the techniques presented in

�
2 to solve

this problem automatically. We use the scenarios to deter-
mine the extent to which we can project the word creativity
onto an agent. We conclude by presenting a road-map for fu-
ture work in creative logic programming, based on the frame-
work presented and using the Mutilated Checkerboard as an
inspiring example [13].

2 Generating New Information
The purpose of this first report about creative logic program-
ming is to give an overview of many methods which could be
applied, rather than to go into the technical details of a few
techniques, some of which is covered elsewhere (for instance
in the various descriptions of inductive logic programming).
In later reports, we intend to provide more specific details
of these methods, using the formality afforded by logic pro-
grams.

At present, it suffices to say that we are proposing a sit-
uation whereby a user has some background knowledge ex-
pressed as logic programs, as they would in an inductive logic
programming application. The task of the agent is to intro-
duce new knowledge into the knowledge base in the hope that
something introduced will be novel and interesting to the user,
and embody some piece of useful information they did not
know they were looking for. We do not look in detail here at
the notion of interestingness. However, it should be noted that
the methods detailed below are inspired by notions from the
creativity literature. Hence it is likely that these methods (or
something similar to them) have been identified as techniques
which have, at some stage, been used for the introduction of
something interesting as part of a creative process.

We present below distinct situations in which an agent
could add knowledge to a knowledge base. It is important to
note two points: (i) these situations are not meant to consti-
tute an exhaustive list of all the ways in which a creative agent
could add information to a knowledge base and (ii) we are in
no way attempting to characterise the creative notions given

below, rather we simply want to present situations in which
it is possible to argue that the word applies to the agent’s ac-
tions. At present, the situations are sketches, but in future, we
hope to appeal more to the formal aspects of logic program-
ming in order to make the framework more concrete.

Logic programs are a subset of first order predicate logic,
where a logic program is a set of Horn clauses. A Horn clause
can be thought of as an implication conjecture where a con-
junction of body literals imply a single goal literal. A literal
can either be a predicate, a function or a constant. In the dis-
cussion below, we often use the word ‘hypothesis’ for a Horn
clause, as this is used in many logic programming contexts.
Also, we use the word ‘concept’ for a clause of the form:
���������	��
������������������������� �!���������"��#$�����%#&��'(������ �

These define a property of tuples of constants. We say that
one logic program entails another if the latter is a logical con-
sequence of the former.

)
Experimentation

Suppose an agent has a Horn clause H and it doesn’t know
whether H is true or false. However, it does know the types
of the variables in H, and knows how to generate examples of
the types, so can generate test tuples for the Horn clause. Note
that this generation process might be as simple as looking
them up in the knowledge base. Suppose further that the agent
tests H against these test tuples in order to find a tuple for
which the body of the clause is true, but the head is false.
Such a tuple would show that H is false, and we say that the
agent is performing experimentation.

)
Deduction

Suppose an agent has a Horn clause H which it knows to be
true, either because it is an axiom, or it has proved it (see
below). In this case, there are various logic program which
are entailed directly from H. These can be obtained by pass-
ing H – possibly along with other Horn clauses known to be
true – through one of many rules of deduction, such as Modus
Ponens, Modus Tollens, Resolution, etc. The resulting Horn
clause is also known to be true because deductive rules of in-
ference only produce true clauses (if they are supplied with
true clauses). We can define a deduction step as comprising a
set of Horn clauses known (or at least temporarily assumed)
to be true, a rule of inference and a Horn clause derived by
applying the rule to the true clauses. Such steps comprise
the operators in the search carried out by automated theorem
provers, and an agent using them can certainly be thought of
as performing deduction.

)
Proving

Suppose an agent has a Horn clause H and it doesn’t know
whether H is true or false. Suppose further that it finds a se-
ries of deduction steps where the final one outputs H from a
rule of inference. Note that the inputs to the inference rule
may have also been the output from a previous step, but that
each step was based on Horn clauses known to be true (either



because they are axioms, or they were deduced from some-
thing known to be true). The series of deduction steps com-
prises a proof of H, and the output from each can be thought
of as adding new knowledge to the knowledge base. Note
that there are alternative ways to prove H, most notably by
negating H and using the resolution method to derive a False
clause.

In another situation, suppose the agent knows that the set
of examples to which H applies is finite, and it exhaustively
checks whether the hypothesis is true of every example in
the list. If the hypothesis is true of every example, then the
hypothesis cannot possibly be false, hence it must be true.
We call this technique proving by exhaustive experimenta-
tion. Any agent which finds proofs of unknown hypotheses
can be thought of as performing the act of proving.

)
Induction

Suppose an agent invents a new concept and then proceeds
to check each known concept in the knowledge base to see
whether it has exactly the same success set as the new con-
cept. Note that the success set of a concept is the set of tuples
of ground instances which satisfy the definition of the con-
cept. If the agent finds such a match, then it could make the
hypothesis that the equality is true in the general case, rather
than just a coincidence due to the limitations of the knowl-
edge base it was supplied with. An equivalence conjecture
between two concepts could be represented as a set of Horn
clauses, by looking at the two implication conjectures embed-
ded in the equivalence and extracting Horn clauses by taking
the left hand side to imply the first literal of the right hand
side, then the second literal, and so on.

This kind of inductive reasoning is similar to that carried
out by the HR system. HR can also make implication hy-
potheses if it notices that the examples of one concept are
all examples of another, and non-existence hypotheses when
it finds that an invented concept has no examples. Similar
kinds of inductive reasoning occur in the Progol ILP system.
In this case, a set of positive and negative examples are gen-
erated and rules of inductive inference are used to generalise
hypotheses. Each generalised hypothesis is checked to see
if it explains why the positives are positive and the negatives
are negative. If the hypothesis is a perfect match, then the
system induces the rule that this is true in the general case,
and returns this answer to the user.

)
Abduction

There are various interpretations of abduction. We shall think
of it as a special case of induction, whereby a possible expla-
nation for a phenomenon is not so much generated as found
within the information it has available already. Hence, sup-
pose we have a situation where an agent has found a hypoth-
esis, H, for which it does not know the truth. The agent then
looks through a set of hypotheses it already has (not necessar-
ily just the true ones), and finds a hypothesis, G, which entails
H. In this case, it has abduced G as a possible explanation of
H. There are abductive logic programming systems [16], and
we are currently extending HR to use abduction [12].

)
Exploration

Suppose, rather than a set of examples, an agent was given a
logic program able to generate examples. One way in which
we could possibly project the word exploration onto the agent
was if it used this generation method to produce a set of ex-
amples in order to provide empirical evidence for inducing
various hypotheses. Note that there are many more ways in
which an agent could perform exploration, for example the
successive use of invention (see below) can be deemed ex-
ploration of a search space. Also, exploratory creativity is
characterised by Boden [2].

)
Invention

The phrase ‘necessity is the mother of invention’ is cer-
tainly true in many cases. Suppose an agent takes two Horn
clauses G and H, and passes them through the intra or inter-
construction rule of inductive inference as described as de-
scribed in [26]. These rules perform predicate invention,
which introduces a new predicate symbol. In this case, the
purpose of the invention is to determine a Horn clause from
which G and H would follow using a resolution inference.

Possibly curiosity is not as closely related to invention as
necessity is, but it is certainly possible to invent things for
no apparent reason at the time of invention, then explore any
implications or applications of the invention. Such invention
is performed by genetic algorithms, and we can use this ob-
servation to propose the scenario where an agent takes two
Horn clauses, G and H, and randomly chooses literals from
the body of G and literals from the body of H to form the
body of a new Horn clause, with the head of the new clause
chosen randomly also. Such crossover techniques are inte-
gral to genetic algorithms, and there are now some genetic
logic programming implementations [17]. Note that genetic
techniques also include mutation, which is another inventive
technique.

Invention for curiosity alone can be done in a more prin-
cipled way than randomly producing new Horn clauses. The
HR system implements such a principled approach through a
set of 12 production rules, which take old concepts and pro-
duce new ones. For instance, thinking of the old concepts
as Horn clauses, HR’s compose production rule produces the
Horn clause obtained by taking all the literals from two old
Horn clauses, discarding any repetitions. Note that the com-
pose rule can also perform unification steps while combining
the Horn clauses. Such invention steps are performed purely
in order to explore the domain, and not for any particular
problem-solving reason (except the overriding one – to find
something interesting in the domain). For a more detailed
discussion of the production rules, see [10].

)
Innovation

The word innovation has some loose notion of quality asso-
ciated with it: many things can be invented/discovered, but if
they are not of value, or do not improve upon the state of the
art, it is difficult to project the word innovative onto the pro-
cess which produced them. We can see that such innovation



occurs in genetic algorithm approaches, where the measure
of value is the fitness function. Similarly, HR has many mea-
sures of interestingness which it uses to assess the value of
inventions, in order to know when an innovation has occurred
and to exploit that innovation (by building new concepts us-
ing it – a heuristic which is intended to increase the value of
the theory as a whole).

Hence the following situation is one in which an innovation
occurs: suppose an agent has a measure of value, M, for a
concept, and invents a new concept D, where D is based on
old concepts B and C. If D is measured to be of higher value
with respect to M than both B and C, then D is an innovation.
We can also supply a more concrete situation: suppose an
agent has a Horn clause, H, which it is trying to prove. H
is not entailed by the current knowledge base, but the agent
invents a new concept and induces a hypothesis, T, about the
new concept, which it proves. T now makes it possible to
prove H. Clearly, T is an innovation, because the ability of
the agent to prove H is increased by the discovery of T.

)
Exploitation

We want to capture here the notion of making use of a chance
occurrence. Such situations occur in human life when people
have many tasks to perform (or problems to solve) and, while
in the pursuit of completing one task, something arises which
allows them to complete another task. If we say that in the
task of adding to the knowledge base, one problem faced by
an agent is to determine the truth of Horn clauses, then we
can suggest the following situation: the agent has a set, S, of
Horn clauses for which it does not know the truth. While ex-
perimenting in order to disprove a particular hypothesis, H,
from S, it generates an example which may or may not dis-
prove H. However, it checks whether the example falsifies the
other Horn clauses in S, and finds one for which it does. We
say that the agent has exploited the introduction of a new ex-
ample in this situation. Note that the HR program performs
this kind of exploitation: whenever it generates a counterex-
ample to a false conjecture, it checks to see whether the same
counterexample breaks any other open conjectures. A similar
situation may occur if the agent first deduces something new,
then checks whether the knowledge base including this new
addition entails one of the unknown Horn clauses in S.

)
Serendipity

If a situation is said to be serendipitous, this is often mis-
interpreted to simply mean lucky, which is a simplification
of the true meaning of the word. In particular, serendipity
involves not just exploiting a new piece of knowledge, but
rather creating a situation in which a new piece of knowledge
may be exploited. This knowledge may be found by chance
(invention, etc.) or it may come from a reasoning process
(deduction, etc.). Hence we believe that in the following sit-
uation, it is possible to say that an agent has acted serendipi-
tously. Suppose an agent has recently found a Horn clause, H,
which it knows to be true. Suppose further that there is a set,
A, of Horn clauses known to be true, which contains H. It then
constructs a hypothesis X, which is entailed by A, but which

is not entailed by A/
�
H � , i.e., set A with H removed. That

is, X can only be proved true if H is known to be true. Here,
given the (partial) solution H, it has constructed the problem
of proving a hypothesis X, and has thus acted serendipitously.

)
Imagination

Suppose an agent has invented a concept for which it can find
no examples. It then introduces a new ground term, T, (or set
of ground terms) and states as an axiom, A, that T satisfies the
definition of the concept. It continues by using A in various
deduction steps in order to determine which other concepts,
if any, are satisfied by T. In this situation, we can say that the
agent has imagined T and determined some additional proper-
ties of T. Note that this may generate a contradiction, leading
to the proof that such a T does not exist. For instance, the
field of complex numbers in mathematics is based on such an
imaginative step, namely the imagination of a number which
multiplies by itself to give -1. Appropriately, this number is
symbolised by the letter i, and is called an imaginary number.

In another situation, suppose an agent has a hypothesis, H,
for which it does not know the truth. If it then assumes the
truth of H, and either deduces something from it directly, or
uses H in the proof of another hypothesis, then we could say
that it has imagined the consequences of H being true. A
similar situation would occur if the agent assumed the falsity
of a theorem/axiom it knew to be true, or vice-versa.

)
Analogy

The treatment of analogy will probably be better served by
a situation in which an agent is working in two domains, or
multiple agents are working in different domains, etc. How-
ever, for consistency, we will use the situation where a single
agent is aiming to develop a knowledge base. Suppose that
a new Horn clause, G, has been produced. Then, the agent
looks through the set of proved Horn clauses and chooses
one, H, which looks most similar in some respect to G. It then
proceeds to carry out the same set of deductive steps as those
used to prove H, perhaps applying similarity tests where nec-
essary to decide which clauses to use in the deductive steps.
We would say here that the agent has used analogy with a
known result to suggest a way to proceed in a new situation.

)
Reparation

Suppose an agent found a Horn clause, H, for which it could
find a small set of counterexamples. It then altered H – ef-
fectively producing a new hypothesis H’ – in such a way that
none of the counterexamples to H were counterexamples to
H’ (and none could be found elsewhere). In this sense, the
agent has repaired H. Note that such techniques for fixing
faulty conjectures are prescribed by Lakatos in [18]. More-
over, there is a project underway to add such abilities to a
multi-agent version of the HR system [27].



3 The Mutilated Checkerboard Problem
In [19], John McCarthy presents the Mutilated Checkerboard
Problem as a Drosophila1 for studying creative solutions to
problems. The problem is stated as follows:

Two diagonally opposite corner squares are re-
moved from a checkerboard. Is it possible to cover
the remaining squares with dominoes? A domino is
a 1 � 2 rectangle that can cover two rectilinearly
adjacent squares.

This problem has a long history in AI, as discussed in [19].
On a checkerboard, diagonally opposite corners have the
same colour, so on a mutilated checkerboard, the number of
squares of one colour is 32, while the number of squares of
the other colour is 30. Humans usually solve the problem
with the realisation that a domino covers both a black and a
white square. That means that, no matter how many dominoes
are put on the board, the number of uncovered black squares
will always be different to the number of uncovered white
squares. Hence, it is not possible to cover the entire board,
because this would lead to the situation where the number
of uncovered black squares equals the number of uncovered
white squares (both equalling zero).

In [19], McCarthy proposes an informal definition for cre-
ative solutions:
)

Definition (informal) A solution to a problem is creative if
it involves concepts not present in the statement of the prob-
lem and the general knowledge surrounding it.

He further asserts that the standard solution to the mutilated
checkerboard problem is creative because it involves concepts
not present in the formulation of the problem, namely the con-
cept of black and white squares.

We suppose that a user is employing a creative logic pro-
gramming agent to solve this problem. We supply four sce-
narios in which an agent attempts to solve the problem. This
enables us to provide overviews of different ways for the cre-
ative techniques described above to be fruitfully employed.
The actions of the creative agent in each scenario are de-
scribed in terms of the framework presented in

�
2. In each

scenario, we pose and attempt to answer two questions: has
the problem been solved, and how creative has the agent
been?

3.1 Scenario 1
In this scenario, an agent is given logic programs which rep-
resent rules for (a) (virtually) placing dominoes on a board (b)
stopping when it cannot place any more on the board and (c)
checking whether all the squares have been covered or not. It
is also given a hypothesis that it is not possible to cover the
board with dominoes. It then exhausts all possible ways of
placing a set of dominoes on a mutilated board, and in each
case it observes that some squares remain uncovered, and re-
ports this to the user.

It has clearly performed experimentation with respect to
the hypothesis that it is not possible to cover the board with

1So called after the Drosophila Melanogaster – the fruit fly –
which has been one of the most studied organisms in genetics.

dominoes, because it has tried to find a counterexample to
the hypothesis. This has resulted in proving the hypothesis
via exhaustive experimentation. There is no doubt that the
program has solved the problem: it has demonstrated that no
covering exists. However, it is difficult to project the word
creative onto the agent’s actions. Part of the reason for this
is that the agent hasn’t found something the user didn’t know
they were looking for. McCarthy would point out that in the
solution, no new concept has been invented. Also, the only
novel things produced are examples of boards with dominoes
on, which is unlikely to be seen as quality output, and cer-
tainly not something that is interesting to the user. Another
part of the reason may be the nature of the calculation, which
was fairly routine, involving only three processes. The user
would probably believe that, if they had enough time, they
could easily solve the problem in the same way, and the agent
has not told them anything interesting other than a verification
that the hypothesis they made was indeed true.

3.2 Scenario 2
It is possible to argue that the problem is posed in such a way
that it enables people to abduce the creative part of the solu-
tion. Because the word checkerboard is stated in the problem
formulation, this obviously brings to mind actual checker-
boards. Of course, most people solve this problem without
ever resorting to physically putting dominoes on a checker-
board. However, they are aware that a checkerboard (as op-
posed to an 8 � 8 grid) is coloured with black and white
squares. Hence, it is not implausible to believe that the con-
cept of black and white squares is part of what McCarthy calls
the general knowledge surrounding the problem, and that hu-
mans do not invent the concept of black and white squares.

In light of this observation, in this second scenario, a cre-
ative agent is supplied with a plethora of background infor-
mation about checkerboards and dominoes. This information
would include concepts (such as black and white squares) and
axioms, such as the fact that a domino always covers both
a black and a white square. The agent would also be sup-
plied with information about possible solutions to the cover-
ing problem, including the fact that if a full covering existed,
there would be no uncovered white squares and no uncovered
black squares. Finally, the agent is given the hypothesis that
the board cannot be covered by dominoes.

Suppose the agent used rules of deductive inference to rea-
son from the axioms to the hypothesis that the board cannot
be covered by dominoes, hence proving by deduction that it
is not possible. Clearly, the problem has been solved by a
classical automated reasoning approach to the problem. This
approach is possibly similar to what McCarthy had in mind
when he originally posed the problem (in a Stanford AI memo
entitled “A Tough Nut for Theorem Provers”).

One could argue that the agent in this scenario has been
more creative than that in scenario 1, because (a) it has pro-
duced something novel and of value, namely the set of de-
duction steps comprising the proof and (b) it is probable, al-
though not certain, that the amount of calculation performed
by the agent in this scenario is less than that performed by
the agent in scenario 1 in amount, but greater in complexity.
That is, the amount of choice of both what to deduce some-



thing new from and of which rule of deduction to perform
the inference with is often quite high in automated theorem
provers. Hence, it is possible that some users may decide that
they could not have found the proof themselves. That does
not mean, however, that the program has found something
the user did not know they were looking for: clearly, by pro-
viding the agent with axioms and a hypothesis, they expected
the program to find a proof. Moreover, the key concept in
the proof – black and white squares – was also supplied by
the user. Hence, under McCarthy’s criteria, as no new con-
cept has been introduced, the agent’s solution in this scenario
would not be called creative.

3.3 Scenario 3
In this scenario, the agent starts with an ability to put domi-
noes on a board and check whether the resulting board state
covers all the squares. It is also given very limited back-
ground knowledge, in particular, it is not given the concept
of black and white squares. It is also given an axiom about
a full covering of the board, namely that the number of un-
covered squares is zero. Furthermore, it is supplied with both
the hypothesis that such a covering can be derived by putting
dominoes on the board, and the hypothesis that this is not
possible.

In this scenario, the agent begins by exploring the space of
board states, by putting dominoes on the board and recording
the board states produced. It then performs invention to pro-
duce new concepts based on the background concepts, and
eventually invents the concepts of black and white squares
and the concept of boards where the number of uncovered
black squares equals the number of uncovered white squares.
Using the evidence of the board states it has produced by
placing dominoes on the board, it then induces the hypothesis
that this new concept is not true of any board state possible
by putting dominoes on the board. It then imagines a conse-
quence that would follow if this induced hypothesis was true,
in the following manner: it proves that, given the axiom about
full coverings having no squares uncovered, the hypothesis
that a covering exists is inconsistent with the induced hypoth-
esis (i.e., it deduces the false clause).

The agent reports that it has invented the concepts of black
and white squares, and the concept of board states where the
number of uncovered black squares is equal to the number of
uncovered white squares. It reports that it has used empirical
evidence to make the hypothesis that board states gained by
putting dominoes on the board never satisfy the definition of
the concept. Finally, it reports the proof that, if the induced
hypothesis is true, then the hypothesis that a full covering can
be derived by putting dominoes on a board is false.

Despite the fact that most users would immediately realise
that the induced hypothesis was true, and hence the agent had
found the correct answer, we cannot say that the agent has
fully solved the problem, because it did not prove the induced
hypothesis. However, it seems much more likely that the user
would project the word creative onto the agent, because (a)
the computations involved invention, induction, imagination,
deduction and proving, and it is possible that the user might
conclude that he/she would not have found a similar solution
and (b) the solution contains novel things that the user did

not know they were looking for, namely the concept of black
and white squares, the hypothesis that the number of black
squares uncovered is always different to the number of white
squares uncovered, and the demonstration that this disproves
the hypothesis that a covering can be found by putting domi-
noes on the board (remember that the user provided both the
hypothesis that a covering is possible and that one is not pos-
sible, hence they did not know which one was true).

3.4 Scenario 4
In this scenario, the agent starts with the same information
as in scenario 3, and again explores the space of board states
achievable by putting dominoes on a board, and invents the
concept of black squares and the concept of white squares
and the concept of board states where the number of uncov-
ered black squares is equal to the number of uncovered white
squares. It makes the empirical conjecture that no board state
exists which satisfies the latter concept.

Looking at the board states before and after putting a
domino on it, the agent induces the hypothesis that putting
a single domino on the board covers up 1 black square
and 1 white square. It then proves this fact by exhaustive
experimentation. That is, it tries every possible way of putting
a single domino on the board and on each occasion, it covers
up a single white square and a single black square. Note that
there are fewer than 64*4=256 distinct ways of putting a sin-
gle domino on the board.

The induced hypothesis has therefore become a proved the-
orem, and from this new fact, the agent deduces that the hy-
pothesis that the concept of board states which have an equal
number of black and white states does indeed have no exam-
ples. Finally, it exploits this new fact to prove that the hy-
pothesis that a covering can be derived by putting dominoes
on a board is false, as in scenario 3. It reports to the user that
it has proved that this supplied hypothesis is false.

Note that, in this scenario, the problem has been fully
solved, because the falsity of the user’s hypothesis has been
shown, with the proof ultimately resting on the truth of an
induced hypothesis which was proved via exhaustive exper-
imentation. Moreover, it is difficult not to project the word
creative onto the agent in this scenario. This is because (a) it
has used seven different techniques associated with creativity
and (b) it has invented many new, interesting things that the
user did not know they were looking for. Moreover, in Mc-
Carthy’s view, because it contains concepts not present in the
problem formulation, the solution is creative.

4 Conclusions and Future Work
We have discussed some techniques for knowledge genera-
tion within an extended machine learning framework where
the task to improve upon from experience is to find some-
thing novel and interesting that the user didn’t know they
were looking for. The inspiration for these techniques came
from creativity studies. We believe it is important to study the
plethora of terms found in the creativity literature from the
bottom up. To this end, we chose a set of creativity notions,
and related them to knowledge generation procedures. Using
a reduced representation (logic programs), we then presented



some situations in which we believe the word could be pro-
jected onto an agent. In this way, we hope to have been fairly
concrete about these creativity notions.

We presented the Mutilated Checkerboard problem as a
case study, in response to McCarthy proposing this as a
Drosophila for creativity studies. We presented four hypoth-
esised scenarios where the background knowledge given to
the agents, and the techniques they employed varied as they
worked towards solving the problem. In three scenarios, we
concluded that the problem had been fully solved, in two sce-
narios, we argued that the agent had acted creatively, and
in only one scenario did we believe that the agent had fully
solved the problem in a creative way. We came to a tenta-
tive conclusion that it was easier to project the word creative
onto the agents which used more varied knowledge genera-
tion techniques (induction, deduction, imagination, etc.). We
believe that the assessment of creative programs in terms of
the variety of reasoning techniques they employ is worthy of
further study.

Our choice of the term ‘creative logic programming’ is due
both to the fact that the techniques involved are inspired by
notions from creativity, and because, when phrased in the rep-
resentation language of logic programs, the framework adds
to the domain of automated logic programming (of which in-
ductive logic programming is a sub-domain). Thus, the ini-
tial study presented here not only adds to the volume of work
aimed at de-mystifying various words from the creativity lit-
erature, but also sketches a new framework for logic program-
ming. This enables us to present the following road-map for
the development of creative logic programming.

Firstly, more notions from the study of creativity need to
be identified and used to inspire possible ways for an agent
to add information to a knowledge base. Some possibil-
ities, which we haven’t had space to cover here, include:
reflection, explanation, evaluation, interpretation, discovery,
abstraction, observation, calculation, synthesis, expansion,
metaphor and argumentation.

Secondly, more situations in which knowledge generation
techniques associated with each of these terms need to be de-
rived. As we have stressed, this will help us gain a more con-
crete understanding of the creative terms themselves, and the
situations should be constructed in such a way that it is possi-
ble to argue that the creative term applies to the way in which
the agent has acted. Ideally, for each of the creative notions
we have introduced, including those only briefly mentioned
above, there will be numerous techniques, situations and sce-
narios to which the word will apply.

Thirdly, in order to make the framework more concrete, we
should take advantage of the formality afforded by the theory
of logic programming. We originally chose logic programs
as the reduced representation language because (a) we could
possibly implement our ideas in Prolog (b) we could draw
on the inductive, deductive and abductive techniques which
are already well developed in AI and (c) there is a wealth of
formal concepts and results associated with logic programs
which we could draw from.

Finally, we need to identify more problems like the Mu-
tilated Checkerboard problem. These should require a multi-
tude of creative techniques to fully solve, and we should simi-

larly identify scenarios wherein we can propose how an agent
would solve them creatively. As another example of a math-
ematics problem requiring at least invention, induction and
deduction, see Zeitz’s plug and chug problem as discussed in
[6]. Implementations will need to be made which carry out
some or all of the techniques highlighted above. The imple-
mentations will need to not only solve the inspiring examples,
like the Mutilated Checkerboard problem, but also solve un-
seen problems in such a way that the user is happy to project
the word creative onto the program.

To implement a truly creative logic programming system,
one possibility we aim to pursue is to extend the function-
ality of the HR system (which has been developed for the
task of finding things the user didn’t know they were looking
for). This extension will be in terms of equipping HR with
abilities that are currently missing from its toolbox. We have
identified areas such as inductive logic programming, genetic
programming, constraint solving, automated theorem prov-
ing and model generation, as possible avenues of research to
draw from. At present, HR can carry out some of the tech-
niques presented in scenario 3 above. In particular, it could be
argued that the invention of the concept of board states with
the same number of black and white squares uncovered is the
most creative part of the solving process in scenario 3 above.
After some experimentation, we have found that HR can in-
vent this concept from very little background information. In
fact, HR needs to be only supplied with two background con-
cepts, namely the concept of the set of coordinates (squares)
not covered by dominoes in a partially covered board, and the
concept of the parity of a number.

The parity of an integer is taken to be 0 if it is even and
1 if it is odd. From this concept, HR invents the concept
of coordinates which share the same parity, e.g., (0,0), (1,3),
(0,4), etc. It then uses its negate production rule to invent the
concept of coordinates with different parities. These two con-
cepts equate to the notion of a black and a white square on the
checkerboard. From these concepts, HR user the size produc-
tion rule to invent the concept of the number of black coor-
dinates (squares) not covered by a domino on a partially cov-
ered board, and does similar for the white squares. Finally,
it uses it’s compose production rule to invent the concept of
partially covered board states which have an equal number
of uncovered black and uncovered white squares. This con-
cept turns out to have no positive examples, as all the board
states have an unequal number of uncovered black and white
squares. It therefore induces the non-existent conjecture that
no board state is possible where this is true. Outputting this
conjecture constitutes the same near-solution as that proposed
in scenario 3. We hope to use this as a springboard for the
production of a full solution such as that suggested in sce-
nario 4. We find it very encouraging that HR can make the
‘Eureka’ step in solving this problem. In future, we hope to
demonstrate that HR can fully solve this problem, given only
minimal information about the domain. If it acts in a similar
manner to the agent in scenario 4, using many techniques as-
sociated with creative behaviour, we will certainly argue that
the program has been creative.

This paper is, we hope, the first of many exploring the no-
tion of creative logic programming as an extension to induc-



tive logic programming. We have already begun the second
stage of this study, which has been to express the way HR
operates in terms of constructing a clausal (logic program)
theory, using a background theory as a seed. We intend to
do likewise for other machine learning and automated rea-
soning systems. Following this, we will endeavour to build a
formal framework within which the functioning of many sys-
tems can both be described and integrated. This will enable
the construction of agents which can take something like a
relational database verbatim and act creatively in order to dis-
cover interesting knowledge that the user did not know they
were looking for.

Acknowledgements
We would like to thank Huma Lodhi, Stephen Muggle-
ton, Marcus Pearce, Alison Pease, Oliver Ray, and Alireza
Tamaddoni Nezhad for insightful contributions to this re-
search. We would also like to thank the organisers of the
UKCRC grand challenges exercise (in particular, the partic-
ipants of Panel D at the associated workshop), as this work
grew out of a submission to that exercise. We are very grate-
ful to the anonymous reviewers for their interesting and per-
tinent comments.

References
[1] M Abell and J Braselton. Maple V by Example. Associ-

ated Press Professional, 1994.

[2] M Boden. The Creative Mind. Weidenfeld and Nicol-
son, 1990.

[3] S Colton. Refactorable numbers - a machine invention.
Journal of Integer Sequences, 2, 1999.

[4] S Colton. An application-based comparison of auto-
mated theory formation and inductive logic program-
ming. Linkoping Electronic Articles in Computer and
Information Science (special issue: Proceedings of Ma-
chine Intelligence 17), 2000.

[5] S Colton. Assessing exploratory theory formation pro-
grams. In Proceedings of the AAAI-2000 workshop on
new research directions in machine learning, 2000.

[6] S Colton. Automated plugging and chugging. In M Ker-
ber and M Kohlhase, editors, Proceedings of the Eighth
Symposium on the Integration of Symbolic Computation
and Mechanized Reasoning, 2000.

[7] S Colton. Automated puzzle generation. In Proceedings
of the AISB’02 Symposium on AI and Creativity in the
Arts and Science, 2002.

[8] S Colton. Automated theory formation applied to mu-
tagenesis data. In Proceedings of the 1st British-Cuban
Workshop on BioInformatics, 2002.

[9] S Colton. Automated Theory Formation in Pure Mathe-
matics. Springer-Verlag, 2002.

[10] S Colton, A Bundy, and T Walsh. Automatic identi-
fication of mathematical concepts. In Machine Learn-
ing: Proceedings of the 17th International Conference,
2000.

[11] S Colton and I Miguel. Constraint generation via au-
tomated theory formation. In Proceedings of CP-01,
2001.

[12] S Colton and A Pease. Lakatos-style methods in auto-
mated reasoning. In Proceedings of the IJCAI’03 work-
shop on Agents and Reasoning, 2003 (forthcoming).

[13] S Colton, A Pease, and G Ritchie. The effect of in-
put knowledge on creativity. In Proceedings of the IC-
CBR’01 Workshop on Creative Systems, 2001.

[14] L De Raedt and L Dehaspe. Clausal discovery. Machine
Learning, 26:99–146, 1997.

[15] L Dehaspe and H Toivonen. Discovery of frequent dat-
alog patterns. Data Mining and Knowledge Discovery,
3(1):7–36, 1999.

[16] A Kakas, R Kowalski, and F Toni. Abductive logic
programming. Journal of Logic and Computation,
2(6):719–770, 1992.

[17] G Kokai. GeLog - a system combining genetic algo-
rithms with inductive logic programming. In Proceed-
ings of the International Conference on Computational
Intelligence, 2001.

[18] I Lakatos. Proofs and Refutations: The logic of mathe-
matical discovery. Cambridge University Press, 1976.

[19] J McCarthy. Creative solutions to problems. In Pro-
ceedings of the AISB’99 Symposium on AI and Scientific
Creativity, 1999.

[20] W McCune. The OTTER user’s guide. Technical Report
ANL/90/9, Argonne National Laboratories, 1990.

[21] W McCune. A Davis-Putnam program and its appli-
cation to finite first-order model search. Technical Re-
port ANL/MCS-TM-194, Argonne National Laborato-
ries, 1994.

[22] A Meier, V Sorge, and S. Colton. Employing theory
formation to guide proof planning. In Proceedings of
the Tenth Symposium on the Integration of Symbolic
Computation and Mechanized Reasoning, LNAI 2385.
Springer, 2002.

[23] R Michalski and J Larson. Inductive inference of
VL decision rules. In Proceedings of the Workshop
in Pattern-Directed Inference Systems (Published in
SIGART Newsletter ACM, No. 63), 1977.

[24] T Mitchell. Machine Learning. McGraw Hill, 1997.
[25] S Muggleton. Inductive Logic Programming. New Gen-

eration Computing, 8(4):295–318, 1991.
[26] S Muggleton. Inverse entailment and Progol. New Gen-

eration Computing, 13:245–286, 1995.
[27] A Pease, S Colton, and A Smaill. A multi-agent ap-

proach to modelling interaction in human mathematical
reasoning. In Proceedings of Intelligent Agent Technol-
ogy, 2001.

[28] R Schapire. The boosting approach to machine learning:
An overview. In Proceedings of the MSRI Workshop on
Nonlinear Estimation and Classification, 2002.


