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Abstract. We believe that AI programs written for discovery tasks will
need to simultaneously employ a variety of reasoning techniques such as
induction, abduction, deduction, calculation and invention. We describe
the HR system which performs a novel ILP routine called automated the-
ory formation. This combines inductive and deductive reasoning to form
clausal theories consisting of classification rules and association rules.
HR generates definitions using a set of production rules, interprets the
definitions as classification rules, then uses the success sets of the defi-
nitions to induce hypotheses from which it extracts association rules. It
uses third party theorem provers and model generators to check whether
the association rules are entailed by a set of user supplied axioms. HR has
been applied to a range of predictive, descriptive and subgroup discovery
tasks in domains of pure mathematics. We describe these applications
and how they have led to some interesting mathematical discoveries. Our
main aim here is to provide a thorough overview of automated theory for-
mation. A secondary aim is to promote mathematics as a worthy domain
for ILP applications, and we provide pointers to mathematical datasets.

1 Introduction

The HR system [4] employs a novel ILP algorithm – which we call automated
theory formation – to build a clausal theory from background knowledge. Pri-
marily, it uses concept formation techniques to search a space of range restricted
definitions, with each definition being interpreted as a classification rule for the
unlabelled examples supplied by the user. Each definition is built from previous
ones, and HR performs a heuristic search by ordering the old definitions in terms
of an evaluation function specified by the user. In addition, using the success sets
of the definitions, HR induces empirical hypotheses about the concepts and ex-
tracts association rules from these. It then uses third party automated reasoning
software to decide whether each association rule is entailed by a set of axioms,
which are also supplied by the user.

HR’s primary mode of operation is to perform descriptive induction, whereby
the classification rules and association rules it generates form a theory about
the examples and concepts in the background knowledge. After the theory is
formed, the user employs various tools to identify and develop the most inter-
esting aspects of it, and to apply these to particular problems. However, in some
applications, the user has supplied labelled examples, and HR has also been
used for predictive induction and subgroup discovery tasks. Our main domain
of application has been mathematics, and HR has made a range of discoveries,
some of which have been worthy of publication in the mathematical literature



[2]. HR’s power comes both from its internal inductive methods and its ability
to use automated theorem provers and model generators for deductive methods.

Our main aim here is to provide details of both the algorithm underlying
automated theory formation (ATF), and the implementation of ATF in HR. In
§2 we describe the input and output to the system, the way it represents knowl-
edge and the way it gains knowledge via theory formation steps. ATF is heavily
dependent on the space of definitions HR can search, and in §3, we provide a
characterisation of this space and how HR moves around it. In §5, we compare
ATF to other ILP algorithms. A secondary aim is to promote mathematics as a
potential domain for machine learning applications, and the use of ILP in par-
ticular. The way mathematics is presented in textbooks often makes it appear a
largely deductive activity. This disguises the fact that, like any science, inductive
methods play an important part in mathematical reasoning. In §4 we describe
four applications of HR to ad-hoc mathematical discovery tasks in number theory
and various algebraic domains. We supply pointers to two online data sets which
have arisen from these applications, so that our experiments can be validated,
and comparisons between ATF and other ILP approaches can be made.

We believe that AI programs written for creative discovery tasks will need
to simultaneously employ a variety of reasoning techniques such as induction,
abduction, deduction, calculation and invention. By performing both inductive
and deductive reasoning, HR is a system which partially satisfies this criteria.
In §6, we speculate on the further integration of reasoning techniques and the
potential for such integrated systems in scientific and other domains.

2 Automated Theory Formation

We attempt here to give an overview of how HR forms a theory using the ATF
algorithm. To do so, in §2.1, we discuss the inputs to and outputs from the
system. In §2.2, we describe how knowledge is represented within the system. In
§2.3, we describe how theory formation steps add knowledge to the theory. We
will use a session in number theory as a running example.

2.1 Input and Output

The knowledge input to HR consists of information in one of five different for-
mats. Firstly, the user can supply some constants, which may represent differ-
ent objects such as integers, graphs, groups, etc. Secondly, the user can supply
some predicates which describe these constants. For instance, in number theory,
background predicates may include a test whether one number divides another.
Thirdly, the user may supply a set of axioms, which are taken to be true hypothe-
ses relating some of the predicates in the background knowledge. During theory
formation, attempts will be made by an automated theorem prover to deter-
mine whether certain association rules are entailed by these axioms. Hence, the
axioms are given in the language of the theorem prover being employed, which
is usually Otter, a state of the art resolution prover [17]. The predicate names
in the axioms must match with those in the background knowledge. Fourthly,
for predictive tasks, the user may supply a classification of a set of examples,



to be used in an evaluation function during theory formation. Finally, the pro-
gram runs as an any-time algorithm by default, but the user may also supply
termination conditions, which are usually application specific, as discussed in §4.

The background predicates and constants are usually supplied in one back-
ground theory file, and the axioms in another, so that the same axioms can be
used with different background files. The classification of examples and the spec-
ification of termination conditions is done on-screen. The background theory and
axiom files for a number theory session are given in figure 1. We see that the user
has supplied the constants 1 to 10 and four background predicates. The first of
these is the predicate of being an integer, which provides typing information for
the constants appearing in the theory. The other three background predicates
are: (i) leq(I,L), which states that integer L is less than or equal to integer I
(ii) divisor(I,D), which states that integer D is a divisor of integer I and (iii)
multiplication(I,A,B) stating that A * B = I . Note that typing informa-
tion for each variable in each predicate is required, which is why the background
file contains lines such as leq(I,L) -> integer(L). The axioms in integer.hra
are obvious relationships between the predicates supplied in the background file.

integer.hrd (background theory)

int001

integer(I)

integer(1).integer(2).integer(3).integer(4).integer(5).

integer(6).integer(7).integer(8).integer(9).integer(10).

int002

leq(I,L)

leq(I,L) -> integer(I)

leq(I,L) -> integer(L)

leq(1,1).leq(2,1).leq(2,2).leq(3,1).leq(3,2).leq(3,3).

leq(4,1).leq(4,2).leq(4,3).leq(4,4). ... leq(10,10).

int003

divisor(I,D)

divisor(I,D) -> integer(I)

divisor(I,D) -> integer(D)

divisor(1,1).divisor(2,1).divisor(2,2).divisor(3,1).divisor(3,3).

divisor(4,1).divisor(4,2).divisor(4,4). ... divisor(10,10).

int004

multiplication(I,A,B)

multiplication(I,A,B) -> integer(I)

multiplication(I,A,B) -> integer(A)

multiplication(I,A,B) -> integer(B)

multiplication(1,1,1).multiplication(2,1,2).multiplication(2,2,1).

multiplication(3,1,3).multiplication(3,3,1).multiplication(4,1,4).

multiplication(4,2,2).multiplication(4,4,1). ... multiplication(10,10,1).

integer.hra (axioms in Otter format)

all a (divisor(a,a)).

all a (leq(a,a)).

all a b (divisor(a,b) -> leq(a,b)).

all a b (leq(a,b) & leq(b,a) <-> a=b).

all a b c (multiplication(a,b,c) -> divisor(a,b).

all a b c (multiplication(a,b,c) -> divisor(a,c).

all a b c (multiplication(a,b,c) <-> multiplication(b,a,c)).

Fig. 1. Example input files for number theory

All five types of information are optional to some extent. In particular, in
algebraic domains such as group or ring theory, the user may supply just the
axioms of the domain, and provide no constants or background predicates. In
this case, HR extracts the predicates used to state the axioms into the back-
ground knowledge file, and uses the MACE model generator [18] to generate a
single model satisfying the axioms. MACE, which uses the same input syntax as
Otter, will be used repeatedly during theory formation to disprove various false
hypotheses made by HR, and this will lead to more constants being added to
the theory. Alternatively, the user may supply no axioms, and only background
predicates and constants. In this case, the system would not be able to prove
anything, unless the user provided axioms during theory formation, as responses



to requests from HR. Note that predicates in the background knowledge file may
call third party software, in particular computer algebra systems like Maple [6].

The output from HR is a theory consisting of a set of classification rules
and a set of association rules. Each classification rule is expressed as a predicate
definition, i.e., a disjunction of program clauses with the same head predicate.
Each program clause in the definition is range restricted and of the form:

conceptC(X1, . . . , Xn)← p1(A1,1, . . . , A1,n1) ∧ . . . ∧ pm(Am,1, . . . , Am,nm
)

where C is a unique identification number, each Xi is a variable, and each Ai,j

may be a constant or a variable which may or may not be the same as a head
variable. Body literals may be negated, and there are further restrictions so that
each definition can be interpreted as a classification rule, as described in §3.
Association rules are expressed as range restricted clauses of the form:

q0(X1, . . . , Xn)← q1(A1,1, . . . , A1,n1) ∧ . . . ∧ qm(Am,1, . . . , Am,nm
)

where the Xi and each Ai,j are variables as before, and each qk is either a
predicate supplied in the background theory file or is one invented by HR. Each
body literal may be negated, and the head literal may also be negated.

An output file for a short, illustrative, number theory session is given in figure
2. HR has many modes for its output and – dependent on the application at hand
– it can produce more information than that presented in figure 2. However, the
clausal information is usually the most important, and we have presented the
clausal theory in a Prolog style for clarity. The first four definitions are those
given in the input file. Note that HR has added the variable typing information
to them, so that it is clear, for instance, in concept2/2 that both variables are
integers. This is important information for HR, and in every clause for each
classification rule HR produces, there are typing predicates for every variable in
the body or head. Following the user-given definitions in the output file, we see
that HR has invented a new predicate, called count1/2 which counts the number
of divisors of an integer (the τ function in number theory). The first classification
rule it has introduced is concept5/2, which checks whether the second variable
is the square root of the first variable. The next definition provides a boolean
classification into square numbers and non-squares. Following this, concept7/2
uses count1 to count the number of divisors of an integer (there seems to be
redundancy here, but count1/2 can be used in other definitions – in fact it is
used in concept8). Finally, concept8/1 provides a classification into prime and
non-prime numbers, because prime numbers have exactly two divisors.

In the output file, each classification rule is followed by the way in which the
rule is interpreted to categorise the constants (in this case, integers). More details
about this are given in §3. After the classification predicates, the program has
listed the unproved association rules it has found so far. The first of these states
that if an integer is a square number (i.e., integers X for which there is some Y
such that multiplication(X,Y,Y)), then it will not be a prime number. The
second states that if an integer is a prime number then it cannot be a square
number. While both of these are in fact true, they are listed as unproved in
the output file, because Otter could not prove them. This is actually because



no attempt was made to use Otter, as rules containing counting predicates are
usually beyond the scope of what Otter can prove.

# User Given Classification Predicates
concept1(X) :- integer(X).
concept2(X,Y) :- integer(X), integer(Y), leq(X,Y).
concept3(X,Y) :- integer(X), integer(Y), divisor(X,Y).
concept4(X,Y,Z) :- integer(X), integer(Y), integer(Z), multiplication(X,Y,Z).

# Invented Counting Predicates
count1(X,N) :- findall(Y,(integer(Y),divisor(X,Y)),A), length(A,N).

# Invented Classification Predicates
concept5(X,Y) :- integer(X), integer(Y), multiplication(X,Y,Y).
categorisation: [1][4][9][2,3,5,6,7,8,10]

concept6(X) :- integer(X), integer(Y), multiplication(X,Y,Y).
categorisation: [1,4,9][2,3,5,6,7,8,10]

concept7(X,N) :- integer(X), integer(N), count1(X,N).
categorisation: [1][2,3,5,7][4,9][6,8,10]

concept8(X) :- integer(X), integer(N), count1(X,2).
categorisation: [2,3,5,7][1,4,6,8,9,10]

# Unproved Association Rules
\+ count1(X,2) :- integer(X), integer(Y), multiplication(X,Y,Y).
\+ multiplication(X,Y,Y) :- integer(X), integer(Y), count1(X,2).

Fig. 2. An example output file in number theory

2.2 Representation of Knowledge

HR stores the knowledge it generates in frames, a well known data structure
described in [20]. The first slot in each frame contains clausal information, so HR
effectively builds up a clausal theory embedded within a frame representation.
There are three types of frame:

• Constant frames. The first slot in these frames contains a single ground
formula of the form type(constant), where type is the name of a unary pred-
icate which has appeared in the background theory and constant is a constant
which has either appeared in the background theory or has been generated by
the theory formation process. Each constant will appear in a single constant
frame, and hence will be of only one type. For instance, in the example session
described in §2.1, there would be a constant frame for each of the numbers 1 to
10, where the ground formula is integer(1), integer(2), etc.

• Concept frames. The first slot in these frames contains a definition of the
form for classification rules described above. The other slots contain the re-
sults of calculations related to the definition. In particular, one slot contains
the success set of the definition. Another slot contains the classification of the
constants in the theory afforded by the definition (see later). At the end of
the session in our running example, there are 8 concept frames, and, for ex-
ample, the 6th of these contains a definition with a single clause of the form:
concept6(X) ← integer(X) ∧ integer(Y ) ∧ multiplication(X, Y, Y ). Note that



the count1/2 predicate is not stored in a concept frame of its own, but in a slot
in the concept frames which require it for their definition.

• Hypothesis frames. The first slot in a hypothesis frame contains one or more
association rules in the form as described above. The other slots contain infor-
mation about the hypothesis. In particular, there is a slot describing the status
of each association rule as either proved, disproved, or open. Association rules are
stored together, as opposed to in separate frames, because the whole can usually
be interpreted as more than the sum of the parts. For instance, the two asso-
ciation rules in figure 2 are stored in the first slot of a single hypothesis frame.
This is because they were derived from a non-existence hypothesis stating that
it is not possible to have an integer which is both square and prime. This infor-
mation is also recorded in the hypothesis slot, and hence the hypothesis can be
presented as the following negative clause, which may be more understandable:

← integer(X), integer(Y ), multiplication(X, Y, Y ), count1(X, 2)

2.3 Theory Formation Steps

HR constructs theories by performing successive theory formation steps. An
individual step may add nothing to the theory, or it may add a new concept
frame, a new hypothesis frame, a new constant frame, or some combination of
these. At the end of the session, various routines are used to extract and present
information from the frames. An outline of an individual step is given in table
1. After checking whether the termination conditions have been satisfied, each
step starts by generating a new definition, as prescribed by an agenda. This is
done using a production rule to derive a new definition from one (or two) old
definitions. This process is described in detail in §3, but for our current purposes,
we can see the kinds of definitions HR produces in figure 2. The new definition
is checked for inconsistencies, e.g., containing a literal and its negation in the
body of a clause. For example, a definition may be produced of the form:

conceptC(X,Y )← integer(X), integer(Y ), leq(X, Y ),¬leq(X,Y )

so that conceptC is trivially unsatisfiable. If, like this one, the definition is not
self-consistent, the step is aborted and a new one started.

After the self-consistency check, the success set of the new definition is cal-
culated. For instance, the success set for definition concept6/1 above would be:
{concept6(1), concept6(4), concept6(9)}, because, of the numbers 1 to 10, only
1, 4 and 9 are square numbers. If the success set is empty, then this provides
evidence for a non-existence hypothesis. That is, HR induces the hypothesis that
the definition is inconsistent with the axioms of the domain, and generates some
association rules to put into the slot of a new hypothesis frame. The extraction
of association rules is done by negating a single body literal (which doesn’t type
the variables) and moving it to the head of the rule. In our running example,
HR invented the following definition, hoping to add it to the theory:

concept9(X)← integer(X)∧integer(Y )∧multiplication(X, Y, Y )∧count1(X, 2)



Inputs: Typed examples E Outputs: New examples N (in constant frames)
Background predicates B Classification rules R (in concept frames)
Axioms A Association rules S (in hypothesis frames)
Classification of examples C
Termination conditions T

(1) Check T and stop if satisfied
(2) Choose old definition(s) and production rule from the top of the agenda
(3) Generate new definition D from old definition(s), using production rule
(4) Check the consistency of D and if not consistent, then start new step
(5) Calculate the success set of D
(6) If the success set is empty, then

(6.1) derive a non-existence hypothesis
(6.2) extract association rules and add to S
(6.3) attempt to prove/disprove association rules using A
(6.4) if disproved, then add counterexample to N, update success sets, go to (7)

else start new step
(7) If the success set is a repeat, then

(7.1) derive an equivalence hypothesis
(7.2) extract association rules and add to S
(7.3) attempt to prove/disprove association rules using A
(7.4) if disproved, then add counterexample to N, update success sets, go to (8)

else start new step
(8) Induce rules from implications

(8.1) extract association rules and add to S
(8.2) attempt to prove/disprove association rules using A

(9) Induce rules from near-equivalences and near-implications
(9.1) extract association rules and add to S

(10) Measure the interestingness of D (possibly using C)
(11) Perform more calculations on D and add it to R
(12) Update and order the agenda

Table 1. Outline of a theory formation step

The success set of this definition was empty, so a non-existence hypothesis was
induced and a hypothesis frame was added to the theory. In the first slot were
put the two association rules which could be extracted, namely:

¬multiplication(X, Y, Y )← integer(X) ∧ integer(Y ) ∧ count1(X, 2)
¬count1(X, 2)← integer(X) ∧ integer(Y ) ∧multiplication(X, Y, Y )

For each rule extracted, an attempt to prove that it is entailed by the axioms is
undertaken, by passing Otter the axioms and the statement of the rule. If the
attempt fails, then HR tries to find a counterexample to disprove the rule. In
algebraic domains, this is done using MACE, but in number theory, HR generates
integers up to a limit to try as counterexamples. If a counterexample is found, a
new constant frame is constructed for it and added to the theory. The success set
for every definition is then re-calculated in light of the new constant. This can
be done if the user has supplied information about calculations for background
predicates (e.g., by supplying Maple code). If no extracted rule is disproved, then
the step ends and a new one starts.

If the new success set is not empty, then it is compared to those for every
other definition in the theory, and if an exact repeat is found (up to renaming of
the head predicate), then an equivalence hypothesis is made. A new hypothesis
frame is constructed, and association rules based on the equivalence are added to
the first slot. These are derived by making the body of the old definition imply
a single (non-typing) literal from the body of the new definition, and vice versa.
For example, if this these two definitions were hypothesised to be equivalent:



conceptold(X, Y )← p(X) ∧ q(Y ) ∧ r(X, Y )
conceptnew(X,Y )← p(X) ∧ q(Y ) ∧ s(X,X, Y )

then these association rules would be extracted:

r(X, Y )← p(X) ∧ q(Y ) ∧ s(X, X, Y )
s(X, X, Y )← p(X) ∧ q(Y ) ∧ r(X, Y )

In terms of proving and disproving, these association rules are dealt with in
the same way as those from non-existence hypotheses. HR also extracts prime
implicates using Otter [5], discussion of which is beyond the scope of this paper.

If the success set is not empty, and not a repeat, then the new definition is
going to be added to the theory inside a concept frame. Before this happens,
attempts to derive some association rules from the new definition are made. In
particular, the success set of each definition in the theory is checked, and if it is
a proper subset or proper superset of the success set for the new definition (up
to renaming of the head predicate), then an appropriate implication hypothesis
is made. A set of association rules are extracted from any implication found and
attempts to prove/disprove them are made as before. Following this, an attempt
is made to find old success sets which are nearly the same as the one for the
new definition. Such a discovery will lead to a near-equivalence hypothesis be-
ing made, and association rules being extracted. Near implications are similarly
sought. Even though they have counterexamples (and hence no attempts to prove
or disprove them are made), these may still be of interest to the user. In our run-
ning example, for instance, HR might next invent the concept of odd numbers,
using the divisor predicate thus: concept9(X) ← integer(X) ∧ ¬divisor(X, 2).
On the invention of this definition, HR would make the near-implication hy-
pothesis that all prime numbers are odd. The number 2 is a counterexample to
this, but the association rule may still be of interest to the user. Indeed, we are
currently undertaking a project to ‘fix’ faulty hypothesis using abductive meth-
ods prescribed by Lakatos [16]. For instance, one such method is to attempt to
find a definition already in the theory which covers the counterexamples (and
possibly some more constants), then exclude this definition from the hypothesis
statement. Details of the Lakatos project are given in [10].

Theory formation steps end with various calculations being performed using
the definition and its success set, with the results put into the slots of a new
concept frame. The new definition is put in the first slot and the frame is added
to the theory. The calculations are largely undertaken to give an assessment of
the ‘interestingness’ of the definition, as prescribed by the user with a weighted
sum of measures. HR has more than 20 measures of interestingness, which have
been developed for different applications, and we discuss only a few here (see
[8] for more details). Some measures calculate intrinsic properties, such as the
applicability which calculates the proportion of the constants appearing in the
definition’s success set. Other measures are relative, in particular, the novelty of a
definition decreases as the categorisation afforded by that definition (as described
in the next section) becomes more common in the theory. Other measures are
calculated in respect of a labelling of constants supplied by the user. In particular,
the coverage of a definition calculates the number of different labels for the



constants in the success set of a definition. For details of how HR can use labelling
information for predictive induction tasks, see [7]. At the end of the step, all
possible ways of developing the new definition are added to the agenda. The
agenda is then ordered in terms of the interestingness of the definitions, and the
prescription for the next step is taken from the top and carried out.

3 Searching for Definitions

To recap, a clausal theory is formed when frames which embed classification and
association rules are added to the theory via theory formation steps. The induc-
tive mechanism is fairly straightforward: the success set of each newly generated
definition is checked to see whether (a) it is empty, or (b) it is a repeat. In either
case, a hypothesis is made, and association rules are extracted. If neither (a)
nor (b) is true, the new definition is added to the theory and interpreted as a
classification rule, and association rules are sought, again using the success set of
the definition. Clearly, the nature of the definitions produced by HR dictates the
form of both the classification rules and the association rules produced. Exactly
how HR forms a definition at the start of each step is determined by a triple:
〈 PR, Definitions, Parameterisation 〉, where PR is a production rule (a general
technique for constructing new definitions from old ones), Definitions is a vector
containing one or two old definitions, and Parameterisation specifies fine details
about how PR will make a new definition from Definitions. When HR updates
the agenda by adding ways to develop a new definition, it generates possible
parameterisations for each of the production rules with respect to the new defi-
nition, and puts appropriate triples onto the agenda. How parameterisations are
generated, and how the production rules actually operate, is carefully controlled
so that HR searches for definitions within a well defined, fairly constrained,
space. We describe below how each definition is interpreted as a classification
rule and characterise HR’s search space. Following this, we give some details of
the operators which HR uses in this space (the production rules).

Definition 1. fully typed program clauses
Suppose we have been given typing information about every constant in a the-
ory, for instance the unary predicate integer(4) in the input file of figure 1.
We call these predicates the typing predicates, and assume that each constant
has only one type. A program clause C with variables X1, . . . , Xm (either in the
body or the head) is called fully typed if each Xi appears in a single non-negated
typing predicate in the body of C. We say that the type of a variable is this
single predicate. A definition is fully typed if each clause is fully typed and corre-
sponding head variables in each clause are of the same type. Given a fully typed
definition, D, with head predicate p(Y1, . . . , Ym) then, for a given integer n, we
call the set of constants which satisfy the typing predicate for Y1 the objects of
interest for D.

Definition 2. n-connectedness
Suppose we have a program clause C with head predicate p(X1, . . . , Xm), where
each Xi is a variable. Then, a variable V in the body of C is said to be n-



connected if it appears in a literal in the body of C along with another variable,
A, which is either n-connected or is Xn. If every variable in either the body
or head of C is n-connected, we say that C is n-connected. Definitions which
contain only n-connected clauses are similarly called n-connected. Note that, as
for fully typed definitions, 1-connected definitions (which we will be interested
in) are a specialisation of range-restricted definitions.

For an example, consider this definition, where p and q are typing predicates:

conceptC(X,Y )← p(X) ∧ q(Y ) ∧ p(Z), r(X, Y ) ∧ s(Y, Z)

This is clearly fully typed, because p(X), q(Y ) and p(Z) provide typing infor-
mation. It is also 1-connected, because Y is in a body literal with X (variable
number 1 in the head), and Z is in a body literal with Y , which is 1-connected.

Definition 3. classifying function
Suppose we have a fully typed definition, D, of arity n, with head predicate p
and success set S. Then, given a constant, o, from the objects of interest for D,
the following specifies the classifying function for D:

f(o) =




{} if n = 1 & p(o) /∈ S;
{{}} if n = 1 & p(o) ∈ S;
{(t1, . . . , tn−1) : p(o, t1, . . . , tn−1) ∈ S} if n > 1.

We build the classification afforded by D by taking each pair of objects of interest,
o1 and o2 and putting them in the same class if f(o1) = f(o2).

As an example classification, we look at concept7 in figure 2, which is a defini-
tion with head predicate of arity 2. It represents the number theory function τ ,
which counts the number of divisors of an integer. The success set for this is:
{(1, 1), (2, 2), (3, 2), (4, 3), (5, 2), (6, 4), (7, 2), (8, 4), (9, 3), (10, 4)}, hence f(1) =
{(1)}, and for the numbers 2, 3, 5 and 7, f outputs {(2)}, for the numbers
4 and 9, f outputs {(3)}, and for the numbers 6, 8 and 10, f outputs {(4)}.
Hence the classification afforded by concept7 is: [1][2,3,5,7][4,9][6,8,10], as shown
in fig. 2.

Theorem 1. Suppose we are given a fully typed definition, D, where each
head variable appears in at least two distinct body literals. Then, if D is not
1-connected, then there is a literal L in the body of some clause C of D such that
L can be removed from C without altering the classification afforded by D.

Proof. Note that the restriction to definitions where all head variables appear in
at least two distinct body variables means that removing a literal cannot remove
all reference to a head variable in the body (which would make calculating the
success set impossible). Given that D is not 1-connected, then there must be
a clause C ′ with a body literal L′ containing only constants or variables which
are not 1-connected. Because there is no connection between the first variable
in the head of C ′ and any variable in L′, then the values that those variables
take in the success set for C ′ will be completely independent of the value taken
by the first head variable. This means that the classifying function for D will be
independent of these variables, and hence we can take C and L in the theorem
statement to be C ′ and L′ respectively. 2



HR is designed to search a space of function free, fully typed, 1-connected
definitions where each head variable appears in at least two distinct body literals.
The variable typing is important for HR’s efficiency: given an old definition to
build from, for each production rule, HR can tell from the typing predicates alone
which parameterisations will produce a definition where a variable is assigned
two types (and hence not satisfiable, because each constant is of a single type).
Such parameterisations are not put on the agenda. Also, when checking for
repeat success sets, HR uses variable typing information to rule out repeats
quickly. More importantly, in light of theorem 1, the set of 1-connected definitions
is a minimal set with respect to the classifications afforded by them. That is,
with this language bias, assuming that the user supplies appropriate background
definitions, HR avoids building definitions which are guaranteed to have a literal
which is redundant in the generation of the classification. As the main reason
HR forms definitions is to interpret them as classification rules, it is important
to know that it searches within this minimal set (although we do not claim that
it searches all of this space).

HR currently has 12 production rules (PRs) which search this space. We
describe four below in some detail, but due to space restrictions, we only provide
a brief sketch of the remainder. For brevity, we assume that each old definition
contains a single clause, but note that the procedures scale up to full definitions
in obvious ways. For more details about the PRs, see [7] or chapter 6 of [4].

• The Exists Production Rule

This builds a new definition from a single old definition. The parameterisation
is a list of integers [k1, . . . , kn]. The PR takes a copy of the old clause for the
new one and then removes variables from the head predicate in each position
ki. The variables are not removed from body literal. For example if it used the
parameterisation [2,3], then HR would turn conceptold into conceptnew as follows:

conceptold(X, Y, Z)← p(X) ∧ q(Y ) ∧ r(Z) ∧ s(X, Y, Z)
conceptnew(X)← p(X) ∧ q(Y ) ∧ r(Z) ∧ s(X, Y, Z)

Note that the first variable in the head predicate is never removed, which ensures
1-connectedness of conceptnew, given 1-connectedness of conceptold.

• The Split Production Rule

This takes a single old definition and instantiates variables to constants in the
new definition, removing literals which end up with no variables in them and
removing constants from the head literal. The parameterisations are pairs of
lists, with the first list corresponding to variable positions in the head, and
the second list containing the constants to which the variables will be instanti-
ated. For instance, if HR started with conceptold as above, and parameterisation
[[2, 3], [dog, cat]], the new definition generated would be:

conceptnew(X)← p(X) ∧ s(X, dog, cat),

because q(dog) and r(cat) would be removed, as they contain no variables. Pa-
rameterisations are generated so that the first head variable is never instantiated,



to ensure 1-connectedness. Also, HR does not generate parameterisations which
would instantiate variables of one type to constants of another type.

• The Size Production Rule

This takes a single old definition and a parameterisation which consists of a
list of integers [i1, . . . , in] representing argument positions in the head predicate.
The PR removes the variables from the head in the positions specified by the
parameters and adds in a new variable of type integer at the end of the head
predicate. Furthermore, if it has not already been invented, HR invents a new
predicate of the form countid, where id is a unique identification number. This
counts the number of distinct tuples of constants in the success set of the old
definition. The tuples are constructed by taking the i1-st, i2-nd etc. variable from
each ground formula in the success set of the old definition. We use the standard
Prolog findall/2 and length/2 predicates to represent the invented predicate. For
example, suppose HR started with conceptold above, and the parameterisation
[2, 3]. It would first invent this predicate:

countC(X,N)← findall((Y, Z), (q(Y ) ∧ r(Z), s(X, Y, Z)), A) ∧ length(A,N)

Note that every literal in the body of the old definition which contains a 2 or
3-connected variable appears in the findall predicate. The new definition would
then be generated as:

conceptnew(X,N)← p(X) ∧ integer(N) ∧ countC(X, N)

Parameterisations are never generated which include the first variable, so it is
not removed. As the first variable will also appear in the counting predicate,
1-connectedness is guaranteed.

• The Compose Production Rule

This takes two clauses C1 and C2 and conjoins the two sets of body literals
together to become the body of the new definition. It then alters the variable
names in the literals imported from C2, removes any repeated literals formed
in the process, then constructs a suitable head for the new definition. This is a
complex PR, and there is no need to go into acute detail here, as an example
will suffice. Suppose we start with these two definitions:

conceptold1(X, Y, Z)← p(X) ∧ q(Y ) ∧ r(Z) ∧ s(X, Y, Z)
conceptold2(A, B,C)← r(A) ∧ q(B) ∧ p(C) ∧ t(A,B, C)

The PR could produce many different definitions from these, for example:

conceptnew(X,Y, Z,C)← p(X) ∧ q(Y ) ∧ r(Z) ∧ s(X, Y, Z) ∧ p(C) ∧ t(Z, Y, C)

Note that the parameterisations are generated so that the new definition is 1-
connected, and does not have typing conflicts, i.e., the changing of variable names
does not cause a variable to have two distinct types.

• Other Production Rules

Some production rules are domain specific. Of the remaining generic ones, the
match production rule takes a single old definition and equates variables within



it. For instance, the match production rule was used to create concept5 in figure
2. The disjunct rule simply adds the clauses from one definition to the set of
disjoined clauses of another one. The negate and forall PRs join two old defi-
nitions like the compose rule, but the negate rule negates the entire body from
the second definition before adding it, and the forall rule adds an implication
sign between the two body conjunctions. Definitions produced by both forall and
negate have to be re-written to present them in program clause form.

4 Applications to Mathematics

HR has shown some promise for discovery tasks in domains of science other
than mathematics. For instance, in [3] we show how HR rediscovers the structural
predictor for mutagenesis originally found by Progol [22]. However, it has mainly
been applied to fairly ad-hoc tasks in domains of pure mathematics, and has
made some interesting discoveries in each case. We look here at four such ad-hoc
applications in terms of (a) the problem specification (b) any extensions to HR
required (c) the termination conditions imposed and (d) the results.

The first task was a descriptive induction task in number theory, very similar
to the running example in this paper. We set ourselves the goal of getting HR to
invent integer sequences (e.g., prime, square, etc.) which were not already found
in the Encyclopedia of Integer Sequences1 and for HR to give us reasons to believe
that the sequences were interesting enough to be submitted to this Encyclopedia.
We specified this problem for HR as follows: to terminate after finding a certain
number (usually 50-100) of integer sequences (i.e., boolean classification rules
over the set of integers) which were not in the Encyclopedia. Moreover, we used
HR to present any association rules involving sequence definitions which could
not be proved by Otter (those proved by Otter were usually trivially true).

HR had to be extended to interact with the Encyclopedia, in order for it to
tell whether a sequence was novel. On top of this, we enabled HR to mine the
Encyclopedia to make relationships between the sequences it invented and those
already in the Encyclopedia. This application turned out to be very fruitful:
there are now over 20 sequences in the Encyclopedia which HR invented and
supplied interesting conjectures for (which we proved). As an example, using
only the background knowledge given in figure 1 for the integers 1 to 50, HR
invented the concept of refactorable numbers, which are such that the number of
divisors is itself a divisor (so, 9 is refactorable, because this has 3 divisors, and 3
divides 9). In addition, HR specialised this to define odd refactorable numbers,
then made the implication hypothesis that all odd refactorable numbers are
perfect squares – a fact we proved, along with others, for a journal paper about
refactorable numbers [2]. As an epilogue, we were informed later that, while
they were missing from the Encyclopedia, refactorable numbers had already
been invented, although none of HR’s conjectures about them had been made.
We’ve received no such notification about the other sequences HR invented.

The next task was to fulfil a request by Geoff Sutcliffe for HR to generate
first order theorems for his TPTP library [24]. This library is used to compare
1 The recognised repository for sequences (www.research.att.com/˜njas/sequences).



0 1 2 3 4
0 0 3 1 4 2
1 0 0 0 0 0
2 0 2 4 1 3
3 0 4 3 2 1
4 0 1 2 3 4

0 1 2 3 4
0 0 2 4 1 3
1 0 4 3 2 1
2 0 1 2 3 4
3 0 3 1 4 2
4 0 0 0 0 0

Fig. 3. The multiplication tables of two algebraic structures.

automated theorem provers: given a certain amount of time for each theorem,
which prover can prove the most. The task was to generate theorems which
differentiate the theorem provers, i.e., find association rules which can be proved
by some, but not all, of a set of provers. This was a descriptive induction task,
and we ran HR as an any-time algorithm, until it had produced a certain number
of theorems. As described in [25], we linked HR to three provers (Bliksem, E,
and Spass) via the MathWeb software bus [15] and ran HR until it had produced
12,000 equivalence theorems and each prover had attempted to prove them (an
overnight session). In general, the provers found the theorems easy to prove, with
each proving roughly all but 70 theorems. However, it was an important result
that, for each prover, HR found at least one theorem which that prover could not
prove, but the others could. In other experiments, we didn’t use the provers, and
the time saving enabled us to produce more than 40,000 syntactically distinct
conjectures in 10 minutes. 184 of these were judged by Geoff Sutcliffe to be of
sufficient calibre to be added to the TPTP library. The following is an example
group theory theorem which was added.
∀x, y ((∃ z (z−1 = x ∧ z ∗ y = x) ∧ ∃u, v (x ∗ u = y ∧ v ∗ x = u ∧ v−1 = x))
↔ (∃ a, b (inv(a) = x ∧ a ∗ y = x) ∧ b ∗ y = x ∧ inv(b) = y))
As with the Encyclopedia of Integer Sequences, HR remains the only computer
program to add to this mathematical database.

The third task was to fulfil a request by Volker Sorge and Andreas Meier to
integrate HR with their system in an application to classifying residue classes.
These are algebraic structures which were generated in abundance by their sys-
tem. The task was to put them into isomorphic classes – a common problem in
pure mathematics – which can be achieved by checking whether pairs of residue
classes were isomorphic. When they are isomorphic, it is often not too time con-
suming to find the isomorphic map. Unfortunately, when they aren’t isomorphic,
all such maps have to be exhausted, and this can take a long time. In such cases,
it is often easier to find a property which is true of only one example and then
prove in general terms that two algebraic structures differing in this way cannot
by isomorphic. Finding the property was HR’s job. Hence, each pair of algebras
presented HR with a predictive induction task with two examples and the goal
of finding a property true of only one. Hence we set HR to stop if such a boolean
definition was found, or if 1000 theory formation steps had been carried out.

As described in [19], HR was used to discriminate between 817 pairs of non-
isomorphic algebras2 with 5, 6 and 10 elements, and was successful for 791 pairs
(96.8%). As an example, consider the two algebraic structures in figure 3. HR
found this property: ∃x (x∗x = x∧∀ y (y ∗y = x⇒ y ∗y = y)) to be true of the
second example, but not the first. This states that there exists an element, x,

2 This data set is available here: www.doc.ic.ac.uk/˜sgc/hr/applications/residues



which is idempotent (i.e., x ∗ x = x) such that any other element which squares
to give x is itself idempotent. This means that there must be an idempotent
element which appears only once on the diagonal.

The final task was to fulfil a request from Ian Miguel and Toby Walsh to
use HR to help reformulate constraint satisfaction problems (CSPs) for finding
quasigroups. CSPs solvers are powerful, general purpose programs for finding as-
signments of values to variables without breaking certain constraints. Specifying
a CSP for efficient search is a highly skilled art, so there has been much research
recently into automatically reformulating CSPs. One possibility is to add more
constraints. If a new constraint can be shown to be entailed by the original
constraints, it can be added with no loss of generality and is called an implied
constraint. If no proof is found, we say the constraint is an induced constraint.

We set ourselves the task of finding both implied and induced constraints for
a series of quasigroup existence problems. We saw generating implied constraints
as a descriptive induction task, and ran HR as an any-time algorithm to produce
proved association rules which related concepts in the specification of the CSP.
We gave the original specifications to Otter as axioms, so that it could prove the
induced rules. Quasigroups are similar to the algebras in figure 3, but they have
each element in every row and column. For a special type of quasigroup, known
as QG3-quasigroups, we used a CSP solver to generate some examples of small
quasigroups. This, along with definitions extracted from the CSP specification,
provided the initial data3 for theory formation sessions. As an example of one
of many interesting theorems HR found (and Otter proved), we discovered that
QG3-quasigroups are anti-Abelian. That is: ∀x, y (x∗y = y∗x→ x = y). Hence,
if two elements commute, they must be the same. This became a powerful implied
constraint in the reformulated CSPs.

We approached the problem of generating induced constraints as a sub-
group discovery problem (in the machine learning, rather than the mathematical,
sense). We gave HR a labelling of the solutions found by the solver, with solu-
tions of the same size labelled the same. Then, using a heuristic search involving
the coverage and applicability measures discussed previously, we made HR prefer
definitions which had at least one positive in every size category (but was not
true of all the quasigroups). We reasoned that, when looking for specialisations,
it is a good idea to look for ones with good coverage over the size categories. At
the end of the session, we ordered the definitions with respect to the weighted
sum, and took the best as induced constraints which specialised the CSP. This
enabled us to find quasigroups of larger sizes. As an example, HR invented a
property we called left-identity symmetry: ∀ a, b (a ∗ b = b → b ∗ a = a). This
also became a powerful constraint in the reformulated CSPs. As discussed in [9],
for each of the five types of quasigroup we looked at, we found a reformulation
using HR’s discoveries which improved efficiency. By combining induced and im-
plied constraints, we often achieved a ten times increase in solver efficiency. This
meant that we could find quasigroups with 2 and 3 more elements than we could
with the naive formulation of the CSP.

3 This data set is available from www.doc.ic.ac.uk/˜sgc/hr/applications/quasigroups



5 Comparison with Other ILP Techniques

Although it has been used for predictive tasks, HR has been designed to un-
dertake descriptive induction tasks. In this respect, therefore, it is most similar
to the CLAUDIEN [12] and WARMR [13] programs. These systems specify a
language bias (DLAB and WARMODE respectively) and search for clauses in
this language. This means that fairly arbitrary sets of predicates can be con-
joined in clauses, and similarly arbitrary clauses disjoined in definitions (as long
as they specify association rules passing some criteria of interestingness). In con-
trast, while we have characterised the space of definitions HR searches within,
each production rule has been derived from looking at how mathematical con-
cepts could be formed, as described in chapter 6 of [4]. Hence, automated theory
formation is driven by an underlying goal of developing the most interesting def-
initions using possibly interesting techniques. In terms of search, therefore, HR
more closely resembles predictive ILP algorithms. For instance, a specific to gen-
eral ILP system such as Progol [21] chooses a clause to generalise because that
clause covers more positive examples than the other clauses (and no negative
examples). So, while there are still language biases, the emphasis is on building
a new clause from a previous one, in much the same way that HR builds a new
definition from a previous one. Note that an application-based comparison of
HR and Progol is given in [1].

Due to work by Steel et al., [23], HR was extended from a tool for a single
relation database to a relational data mining tool, so that multiple input files
such as those in figure 1, with definitions relating predicates across files, can be
given to HR. However, the data that HR deals with often differs to that given
to other ILP systems. In particular, HR can be given very small amounts of
data, in some cases just two or three lines describing the axioms of the domain.
Also, due to the precise mathematical definitions which generate data, we have
not worried particularly about dealing with noisy data. In fact, HR’s abilities to
make ‘near’ hypotheses grew from applications to non-mathematical data. There
are also no concerns about compression of information as there are in systems
such as Progol. This is partly because HR often starts with very few constants
(e.g., there are only 12 groups up to size 8), and also because HR is supplied with
axioms, hence it can prove the correctness of association rules, without having
to worry about overfitting, etc.

The final way in which ATF differs from other ILP algorithms is in the inter-
play between induction and deduction. Systems such as Progol which use inverse
entailment techniques, think of induction as the inverse of deduction. Hence, ev-
ery inductive step is taken in such a way that the resulting hypothesis, along
with the background knowledge, deductively entails the examples. In contrast,
HR induces hypotheses which are supported by the data, but are in no way
guaranteed to be entailed by the background predicates and/or the axioms. For
this reason, HR interacts with automated reasoning systems, and is, to the best
of our knowledge, the only ILP system to do so. The fact that HR makes faulty
hypotheses actually adds to the richness of the theory, because model generators
can be employed to find counterexamples, which are added to the theory.



6 Conclusions and Further Work

We have described a novel ILP algorithm called Automated Theory Formation
(ATF), which builds clausal theories consisting of classification rules and associa-
tion rules. This employs concept formation methods to generate definitions from
which classification rules are derived. Then, the success sets of the definitions
are used to induce non-existence, equivalence and implication hypotheses, from
which association rules are extracted. In addition to these inductive methods,
ATF also relies upon deductive methods to prove/disprove that the association
rules are entailed by a set of user supplied axioms. We discussed the imple-
mentation of this algorithm in the HR system, and characterised the space of
definitions that HR searches. HR differs from other descriptive ILP systems in
the way it searches for definitions and the way in which it interacts with third
party automated reasoning software. HR has been applied to various discovery
tasks in mathematics, and has had some success in this area. In addition to
describing ATF and HR, we have endeavoured to promote mathematics as a
domain where inductive techniques could be fruitfully employed. To this end, we
have supplied pointers to two data sets which arose from our applications.

We aim to continue to improve our model of automated theory formation. In
particular, we are currently equipping HR with abductive techniques prescribed
by Lakatos [16], and modelling advantages of theory formation within a social
setting via a multi-agent version of the system [10]. We are continuing the appli-
cation of HR to mathematical discovery, e.g., we are currently attempting to use
it to re-discover the graph theory results found by the Graffiti program [14]. We
are also applying HR to other scientific domains, most notably bioinformatics,
e.g., we are currently using HR to induce relationships between concepts in the
Gene Ontology [11]. We are also continuing to study how descriptive ILP tech-
niques like ATF can be used to enhance other systems such as theorem provers,
constraint solvers and predictive ILP programs. In particular, we are studying
how descriptive techniques may be used for preprocessing knowledge.

ATF uses invention, induction, deduction and abduction, and HR interacts
with automated theorem provers, model generators, constraint solvers and com-
puter algebra systems to do so. For systems such as HR to behave creatively, we
believe that the search it undertakes must be in terms of which reasoning tech-
nique/program to employ next, rather than search at the object level. We envis-
age machine learning, theorem proving, constraint solving and planning systems
being routinely integrated in ways tailored individually for solving particular
problems. We believe that such integration of reasoning systems will provide
future AI discovery programs with more power, flexibility and robustness than
current implementations.
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