The NumbersWithNames Program

Simon Colton Louise Dennis
Mathematical Reasoning Group School of Computer Science
Division of Informatics and Information Technology
University of Edinburgh, UK University of Nottingham, UK
Email: simonco@dai.ed.ac.uk Email: 1ad@cs.nott.ac.uk
Abstract

We present the NumbersWithNames program which performs data-mining on the Encyclopedia
of Integer Sequences to find interesting conjectures in number theory. The program forms conjec-
tures by finding empirical relationships between a sequence chosen by the user and those in the
Encyclopedia. Furthermore, it transforms the chosen sequence into another set of sequences about
which conjectures can also be formed. Finally, the program prunes and sorts the conjectures so
that the most plausible ones are presented first. We describe here the many improvements to the
previous Prolog implementation which have enabled us to provide NumbersWithNames as an online
program. We also present some new results from using NumbersWithNames, including details of an

automated proof plan of a conjecture NumbersWithNames helped to discover.

1 Introduction

The Encyclopedia of Integer Sequences! is one of the most useful and popular mathematics resources
available on the internet. With the help of many mathematicians, Neil Sloane has collected over 60,000
sequences of integers along with information about them such as definitions, links, computer algebra code,
etc. Because of the number and range of sequences in the Encyclopedia, there have been occasions when
coincidences arising from its use have led to a connection between two different areas of mathematics
(and other sciences) being made. For instance, in [S1o98], Sloane relates how a sequence which arose in
connection with a quantization problem was linked via the Encyclopedia with a sequence arising from
the study of three-dimensional quasi-crystals.

As part of the HR project [Col01], we have attempted to increase the possibility of such research
conjectures being made. The HR program enables this by data-mining the Encyclopedia to find empirical
relationships between sequences. This initial approach is detailed in [CBWO00], where the emphasis was
on producing conjectures about sequences which HR had also invented. For instance, HR invented the
concept of integers for which the number of divisors is a prime number, and through data-mining, it also
conjectured that numbers where the sum of divisors is a prime number have a prime number of divisors

— a fact we were able to prove. Further results from this initial approach are given in [Col99].

1 Available here: http://www.research.att.com/ "njas/sequences

The previous Prolog implementation within HR was very basic. We have now changed the emphasis
so that the user can choose the sequence about which to form conjectures from any in the Encyclopedia
(or indeed, any they care to invent). We have also improved the way in which the program makes
conjectures, and made it available as the ‘NumbersWithNames’ Java program which can be used online
at: http://www.machine-creativity.com/programs/nwn.

Given a sequence S, chosen by the user, NumbersWithNames performs a four step process:

1. it identifies and invents sequences related to S

2. it makes conjectures about S and the related sequences

3. it prunes any uninteresting conjectures

4. it sorts the conjectures in order of decreasing plausibility

In §2, we detail how NumbersWithNames makes conjectures by finding relationships between the chosen
sequence (and transformations of it) and those in the Encyclopedia. In §3, we detail a new measure of
plausibility for these conjectures which has been generalised from two previous measures. This measure
is used to both prune implausible conjectures and to sort those remaining so that the user can view the
most plausible first. In §4, we present some new results from the program, and detail how we have used
the AClam proof planner [RSG98] to find a proof plan for a generalised conjecture suggested by results

from NumbersWithNames.

2 Making Conjectures in NumbersWithNames

The Encyclopedia contains many different types of sequence. In particular, there are around 1000 number
types, such as prime numbers, even numbers, odd numbers, etc. in the Encyclopedia which are sufficiently
important to have been given a name in the mathematical literature, and NumbersWithNames works
with these. This design consideration was for various reasons. First, all the sequences are downloaded
as part of a Java archive file, so having 1,000 rather than 60,000 to download was preferable. Second,
searching through 1,000 sequences repeatedly to find conjectures is possible in an acceptable time limit,
but searching through 60,000 repeatedly is not. Third, and most importantly, conjectures about number
types can be stated in a natural way, for instance: prime numbers are not multiples of four, or: odd
refactorable numbers are square numbers (refactorable numbers are such that the number of divisors is

itself a divisor [Col99]).

2.1 Finding Empirical Relationships

For a sequence S, chosen by the user, NumbersWithNames searches through the 1,000 number types,
trying to find sequences, T', which are empirically related to S. The relationships it looks for are:

® Subsequences, i.e., all members of T that are within the range of S are actually in S. (The range of
S is the part of the number line it occupies). For example, suppose S was the perfect numbers (equal
to the sum of their proper divisors) and T was the even numbers. All the perfect numbers stored in the

Encyclopedia which are in the range of the even numbers (in the Encyclopedia the range of the even

numbers is 0 to 120) are themselves even. Hence NumbersWithNames would make the conjecture that
all perfect numbers are even (a well known open conjecture).

® Supersequences, i.e., all members of S that are within the range of T' are actually in T'.

® Disjoint sequences, i.e., no member of S is a member of T'. For example, none of the entries in the
perfect numbers sequence are found in the odd number sequence, so the program conjectures that there
are no odd perfect numbers.

® Moonshine sequences, i.e., there is a large integer (greater than 10,000) which is found in both S
and T'. NumbersWithNames notices if any large integer in S matches to within + 2 with one in T". This
is inspired by the ‘monstrous moonshine’ theorem relating group theory and elliptic modular functions
[CNT79]. This theorem — the proof of which gained Richard Borcherds a Fields Medal — was discovered

when the numbers 196883 and 196884 were found in seemingly distinct areas of mathematics.

2.2 Transforming the Given Sequence

Often, there may be a very interesting conjecture about a sequence closely related to the sequence of
interest. As a trivial example, the conjecture: “all prime numbers are odd” is not true. However, the
conjecture: “all prime numbers except 2 are odd” is true. Hence, transforming the sequence into a set
of closely related ones may produce more interesting conjectures. To find concepts related to a chosen
sequence S, NumbersWithNames first looks for ones with similar names in the database. For instance,
if S was prime numbers, it would find sequences such as Mersenne prime numbers, Mills prime numbers,
additive prime numbers and so on, and make conjectures about those also.
Following this, NumbersWithNames invents concepts by both transforming S and by combining it
with others. The transformations are limited at the moment to:
® Adding one and taking one from the sequence, e.g., the sequences of primes-plus-one: 3,4,6,8, ...
® Monster-barring, e.g., the sequences of primes-except-2: 3,5,7,11, ...
® Finding difference sequences, i.e., taking the differences between consecutive terms in the sequence.
® Finding the binomial sequence, i.e., taking the first term of the difference sequence, the first term
of the difference-of-differences sequence and so on (known as the binomial transformation).
NumbersWithNames also combines S with those which have been assigned the keyword: “core” in
the Encyclopedia of Integer Sequences?. It has two ways to combine a pair of sequences:
® Conjunction, e.g., combining the sequences of odd numbers and prime numbers into the sequence:
“odd prime numbers”.
® Indexing, e.g., combining the sequences of odd numbers and prime numbers by taking the prime
numbers which have an index in the sequence which is an odd number, i.e., p1, p3, ps, etc. where p; is
the i-th prime number.
The user decides the number of additional sequences the program introduces. They are given three
options: the first invents no additional sequences, the second invents all additional sequences except

those produced by combination with the core sequences, and the third invents all additional sequences.

2Sequences in the Encyclopedia all have associated keywords, including “core”, “nice” and “hard”.

3 Pruning and Sorting Conjectures

NumbersWithNames employs pruning techniques to reduce the number of uninteresting and trivial
conjectures produced. Firstly, the program discards conjectures which follow from the definitions of
the sequences involved. For instance, it throws away the conjecture that odd prime numbers are prime
numbers, because, using the names of these sequences, it assumes that odd prime numbers are, by
definition, a specialisation of prime numbers. Secondly, it discards a conjecture if it has already made a
stronger conjecture. For instance, it throws away conjectures such as: “e-perfect numbers are refactorable
numbers” if it has already made (or makes later) the conjecture: “e-perfect numbers are even refactorable
numbers”. This is because the first conjecture is subsumed by the second, stronger, conjecture. This
functionality is similar to the ‘echo’ heuristic employed by the Graffiti program (see §5). Finally, the
user is able to prune the conjectures further, by supplying text which must be (or must not be) in the
definition /keywords of the sequences in the conjecture.

Even after pruning, the program often produces a plethora of conjectures. Therefore, we enabled
it to present the most plausible ones first. The plausibility is calculated as the probability that the
conjecture is not a coincidence. Given sequence S with terms s1,. .., s; and sequence T, the plausibility

of the conjecture that T is a subsequence of S is calculated as:

L X
1_()
Sk — S1

where X is the number of terms of T in the range of S. For example, suppose S was the powers of two,

which has these terms in the Encyclopedia:

1,2,4,8,16,32, 64,128,256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144,
524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728,
268435456, 536870912, 1073741824, 2147483648, 4294967296, 8580934592

Further suppose that NumbersWithNames conjectures that superperfect® numbers:
2,4,16,64,4096,65536,262144,1073741824, 1152921504606846976,

are powers of two. There are 34 powers of two recorded in the Encyclopedia, ranging over the numbers
1 to 8589934592, so the probability of a number between 1 and 8589934592 being a power of two is
(34/8589934592) =~ 0.000000004. We do not know whether 1152921504606846976 is a power of two or
not, because the sequence of powers of two stops before it gets that far. However, the other 8 superperfect
numbers certainly are powers of two, and the probability of this happening by coincidence is therefore
0.0000000048, which is approximately 6 x 10~%8. Therefore, the conjecture that superperfect numbers are
powers of two is extremely plausible, because the probability of it happening as a coincidence is very small
indeed. NumbersWithNames calculates this plausibility measure for the supersequence and subsequence
conjectures and a similar one for the disjoint conjectures. It then presents the conjectures in decreasing

plausibility. This measure supersedes two previous measures, namely the ‘term overlap’ (number of

3Superperfect numbers are integers n such that o(o(n)) = 2n, with o(n) defined as the sum of the divisors of n.

terms shared by the sequence and sub-sequence) and ‘range overlap’ (proportion of the number line
occupied by either sequence which is actually occupied by both), which are described in [CBW00]. We
found that the plausibility measure, in addition to being easier to use than the two previous measures,
also highlighted more interesting conjectures. For instance, if three small terms overlap in a sequence
and subsequence, the conjecture scores 3 for term overlap. If however, three large terms overlap — a
potentially more significant result — the conjecture still only scores 3 for term overlap. In contrast, the

plausibility measure is low for the small overlapping terms and high for the large overlapping terms.

4 Results

We chose 10 sequences at random and used all the functionality of NumbersWithNames to form as
many conjectures about each one as possible. The average time to complete the task using the Java
Virtual Machine (JVM) in Internet Explorer version 5 on a 1000Mhz laptop, was around 90 seconds
per sequence. As this is not an excessive time to wait, we have not investigated any more sophisticated
algorithms for finding conjectures. There is, however, a problem with the JVM implemented in versions
of Netscape, and we have experienced between 4 and 5 times slower execution with Netscape. This
appears to be a problem that Sun Microsystems are aware of.

NumbersWithNames, while relatively new as an online program, is in fact the conclusion of a project
which has been ongoing for a number of years, namely using automated techniques within the HR
program to find conjectures about sequences in the Encyclopedia of Integer Sequences. There have been
many interesting results from this analysis along the way. Some interesting theorems HR discovered
(which we proved ourselves) include:
® If the sum of divisors of an integer is prime, then the number of divisors is prime.
® Refactorable numbers (as described in §2 above) are congruent to 0, 1, 2 or 4 mod 8.
® Every even® perfect number can be written in the form lcm(a,o(a)) and in the form ¢(b) (o (b) — b) for
some a and b [where lem(z,y) is the lowest common multiple of z and y, o(a) is the sum of divisors of
a and ¢(b) is the number of integers less than or equal to b which are co-prime to it].

Also, there are many new conjectures produced by NumbersWithNames which are awaiting investi-
gation (i.e., a proof or disproof), for example:
® e-perfect numbers (where the sum of the exponential divisors of n equals 2n) are even refactorable
numbers (where the number of divisors is itself a divisor).

Also, NumbersWithNames has made some moonshine conjectures, such as pointing out the unlikely
coincidence that:

® 1073741823 is a Stirling number, 1073741824 is a superperfect number (and power of two), and
1073741825 is a Jacobsthal-Lucas number.

Despite encouragement by ourselves within the mathematical community, we not encountered a mathe-

matician using NumbersWithNames as a research tool. We present three successful investigations below,

4Note that the conjecture as to whether there exists an odd perfect number is still open.

in the hope that such success will encourage researchers to use NumbersWithNames to supply conjectures

about sequences they are interested in.

4.1 Pernicious Numbers

Jeremy Gow invented the notion of pernicious numbers, namely integers n where the number of 1s in the
binary representation of n is a prime number. This continues in the tradition of odious numbers (odd
number of 1s) and evil numbers (even number of 1s). We wished to find something of interest about
these numbers, but with the previous implementation of the data-mining within HR, we only discovered
that powers of two are not pernicious. This is trivially true, because powers of two in binary form are a
one followed by zeros.

However, when we looked for conjectures about pernicious numbers with NumbersWithNames later, it
produced 165 subsequence conjectures. We pruned these by keeping only the ‘core’ sequences conjectured
to be a subsequence of pernicious numbers. This reduced the number to seven and only one of these was
true (we found counterexamples to the others using the GAP computer algebra system [Gap00]). The

true conjecture was very interesting, though:
Perfect numbers are pernicious.

Perfect numbers — equal to the sum of their proper divisors — are of great interest in number theory,
and any result about their nature may be important. The reason this conjecture was not made previously
by HR is because we always used a term overlap minimum of four or more for the conjectures. That
is, we instructed HR to discard any subsequence conjectures where the two sequences shared fewer
than four terms. The perfect numbers are: 6,28,496,8128, ... and the largest pernicious number in the
Encyclopedia is 100, hence the conjecture that perfect numbers are pernicious was discarded, because
the empirical evidence for it amounted to only two terms: 6 and 28. In NumbersWithNames, however,
this conjecture was given a plausibility of 38%. Hence, as only conjectures with 0% plausibility are
discarded, the conjecture was observed in the output.

It was not obvious to us that perfect numbers — defined in terms of the sum of their divisors —
should show any special characteristics when written in binary. On writing the perfect numbers in

binary, we noticed the following pattern:
6 =110, 28 =11100, 496 = 111110000, 8128 = 1111111000000

To cross-check, we later used NumbersWithNames to provide conjectures about perfect numbers, and
it conjectured not only that perfect numbers are pernicious, but also that they are nialpdrome numbers
of type 2 (such that, in binary, they are 1s followed by 0s). Hence, taken together, NumbersWithNames
had made the conjecture that perfect numbers, when written in binary, comprise a prime number of 1s
followed by zeros, and we see that in the examples above.

It turns out to be fairly easy to prove this theorem, given a result found in Hardy and Wright’s
standard number theory text [HW38], that even perfect numbers are of the form: 2" 1(2" — 1) where

2™ — 1 is a prime (called a Mersenne prime). It is fairly easy to show that multiplying a number of the

form 2"~! with a number of the form 2" — 1 (with n the same in each), produces a number which, when
written in binary, is n ones followed by n — 1 zeros. On presenting this to an ‘integer sequence fans’
mailing list, the overall impression was that, while it was a pleasing result they had not seen before,
because it followed easily from Hardy and Wright’s theorem, it was just an example of how related the
concepts in number theory are, and was unlikely to be of importance. This should not detract, however,
from the fact that NumbersWithNames made us aware of this theorem, which added to the value of

pernicious numbers, and that we are unlikely to have found it ourselves.

4.2 Zeitz Numbers

NumbersWithNames can provide insight which may help solve problems. As an illustrative example, we
looked at a problem posed in [Zei99]:
® Show that numbers of the form n(n + 1)(n + 2)(n + 3) are never square numbers.
Zeitz suggests ‘plugging and chugging’, i.e., putting numbers into the formula and seeing if the results
suggest anything which may help solve the problem. We used NumbersWithNames to help with the
discovery part. Putting n = 1,2,3 and 4 into the formula above resulted in: 24,120,360 and 840. We
then added this as a new sequence to NumbersWithNames (which it is possible to do online, without
having to recompile the program), and called this number type: ‘zeitz numbers’. Then we asked for
conjectures about this sequence.

The first four conjectures, sorted in terms of plausibility, about zeitz numbers were:
1. zeitz numbers are highly composite numbers
2. zeitz numbers are super-abundant numbers
3. zeitz numbers are minimal(1) numbers
4. zeitz-plus-one numbers are square numbers
The first three conjectures did not help us solve the problem, but the fourth one states that adding
one to zeitz numbers produces square numbers. This implies that zeitz numbers can never be square
numbers, because square numbers are never 1 apart on the number line. Thus, if the conjecture made
by NumbersWithNames is true, then the problem is solved. In [Zei99], Zeitz says that making this
conjecture is the most important part of solving the problem, and the rest follows easily from this

Eureka step, namely showing that n(n + 1)(n + 2)(n + 3) can be written as (n? + 3n + 1)2 — 1.

4.3 Sqrt(n)-Rough Numbers

To encourage the ‘integer sequence fans’ to use NumbersWithNames, we have periodically used it to
form some conjectures about sequences that were currently being discussed on that mailing list. On
one occasion, discussion centred around a sequence invented by Knuth and Greene [GK90]: integers
where the largest prime factor is less than the square root. For example, 8 is the first such number,
because the largest prime factor is 2, which is less than /8. These are called sqrt(n)-rough numbers.
NumbersWithNames made a series of conjectures that interested us, including;:

¢ centred square numbers (of the form 2n(n + 1) + 1) are sqrt(n)-rough-plus-one numbers

® hex numbers (of the form 3n(n + 1) + 1) are sqrt(n)-rough-plus-one numbers
® star numbers (of the form 6n(n + 1) + 1) are sqrt(n)-rough-plus-one numbers

All of these conjectures had plausibility 99% or 100%, and we note that if NumbersWithNames
hadn’t invented the sequence of sqrt(n)-rough-plus-one (by adding one to the original sequence), this
series of conjectures would not have been brought to our attention. This highlights the need for the

concept formation part of NumbersWithNames. We generalised this result to the following;:

Given any two integers k and n such that n2 >k > 1,

then the number kn(n + 1) will be a sqrt(n)-rough number.

We proved this result, and found that, unusually, we did not have to appeal to any results from number
theory other than some simple facts about inequalities and square roots.

AClam [RSG98] is a higher-order proof planning system. It is a descendent of the Clam [BvHHS90]
series, and is specialised for proof by induction, but is also intended to allow the rapid prototyping of
automated theorem proving strategies. AClam works by using depth-first planning with proof methods.
Each node in the search tree is a subgoal under consideration at that point®. The planner checks the
preconditions for the available proof methods at each node and applies those whose preconditions succeed
to create the child nodes. The plan produced is then a record of the sequence of method applications
that lead to a trivial subgoal.

Proof methods are intended to act as partial tactic specifications for tactics in some object-level
theorem prover. In Clam this was the Oyster constructive type-theory system, which was based on Nuprl.
At present, AClam has no associated theorem prover. However the plans produced by AClam are at an
equivalent level to “pen and paper” proofs produced by mathematicians. AClam’s proof methods are
believed to be sound although they are not currently reducible to sequences of inference rule applications
in some logic. Thus a AClam plan of the conjecture above would represent an equivalent guarantee of
correctness to that provided by the hand proof already in existence. Proof method applications are
governed by their preconditions (which may be either legal or heuristic in nature) and by a proof strategy
which restricts the possible proof methods available depending on the progress through the proof. For
instance, when involved in rewriting a goal using a selection of definitions and lemmas, we generally
wish to attempt to rewrite as much as possible (i.e. simplify the goal as much as possible) by applying
our rewriting method exhaustively before considering other procedures such as checking for tautologies.

AClam is, at present, ill-equipped to deal with problems which rely on a large body of previous
results for their proof, but is better able to deal with problems where the proof follows primarily from
the definitions of the concepts involved. As this was the case with the sqrt(n)-rough conjecture, we
decided to investigate whether AClam could prove the result. Our aim was to show that AClam could
be incorporated into the process to provide — for simple conjectures at least — this sort of proof
automatically. Combination of systems such as AClam and NumbersWithNames are important both

for the advancement of Artificial Intelligence and in order to attract mathematicians to use automated

5More accurately each node is the partial plan at that point but viewing this as the current subgoal is sufficient for this

application.

tools, i.e., if researchers are supplied not with conjectures, but rather proved theorems, then this might
encourage them to invest some time applying and even developing such automated techniques.

Proof methods and proof strategies are devised by observing common patterns in families of proofs.
They are intended to represent generic mathematical processes applicable across a range of problems.
AClam had not previously been applied to problems like the theorem about sqrt(n)-rough numbers
shown above, and so we had to create a new proof strategy. The original hand proof of the result was
used as a guide to the proof procedures involved but abstracted to a number of generic steps. These
were perceived to be the use of rewriting with definitions and lemmas and the use of reasoning based on
transitivity. Rewriting is a standard procedure, and methods supporting this were already available in
AClam. Reasoning about transitivity had not, however, been tackled previously by the system.

We extended A Clam with a simple proof method for reasoning about transitivity. The proof method’s

preconditions were as follows:
e We wish to prove H F A < B where H is a list of hypotheses and A and B are terms.

e C < B' appears in the hypothesis list, H, or C < B’ is a known lemma and there exists a
substitution o on the free variables of B and B’ such that o(B) = o(B’).

If these preconditions succeeded then the planner would add the subgoal o(H) F o(4) < ¢(C) to the
search tree. There is an equivalent case for replacing A by a new value. We prototyped a proof strat-
egy which attempted to repeatedly apply symbolic evaluation (rewriting) and this transitivity method,
backtracking where necessary. In order to make the search tractable, we had to modify the transitivity
method so that it did not attempt to prove H F A < 1 at any point. An expert AClam user was
able to put together the transitivity method and the prototype proof strategy (interleave rewriting and
transitivity reasoning exhaustively) in less than 2 days of work.

With this machinery, AClam automatically found a plan for the conjecture:
VE.Vn. (1 < VE) A (k < n®) A (VE < n)) = sr(k* (n* (n+1)))

(where sr(z) means that z is sqrt(n)-rough). A number of standard lemmas about squares etc. were
assumed to make this possible. Note that the condition 1 < vk explicitly rules out those cases where
k =2 or k = 3, where a different style of reasoning, based on substituting values into the theorem would
have been required.

Ideally, we would like to test our proof strategy on a number of conjectures produced by Number-
sWithNames, to see if it is sufficiently general to automatically plan a range of problems. We have
not attempted this, as we believe the strategy to be limited in its abilities. However, we are currently
developing techniques in AClam for the rapid combination of decision procedure techniques [JB01]. The
proof for the theorem planned by AClam requires a combination of linear arithmetic with some rewrit-
ing. This is a major application of the decision procedure work we are involved in and we hope that
a generic strategy for performing this task will be available in AClam shortly. We believe that, while

our proof strategy provided a proof of concept that AClam could be used for conjectures from Number-

sWithNames, it would be more robust in the long term to use a proof strategy based on our decision
procedure work.

Clearly, the nature of proof strategy development requires a family of conjectures with proofs which
may be examined for common patterns. There is work in the automated development of proof strategies
[JKBOO] which may, in future, allow proof planning systems to make a contribution even in new domains.
The theorem proving work reported here is very preliminary in nature, but we feel that the speed (relative
to other proof strategy developments) with which a proof strategy for a NumbersWithNames conjecture
could be developed shows that AClam could be usefully used when conjectures are being formed in

well-understood domains.

5 Related Work

Compared to systems for proving theorems automatically, there have been relatively few programs de-
signed to automatically make research conjectures of real interest to mathematicians. The Graffiti pro-
gram [Faj88] has, to the best of our knowledge, been the only program which has successfully produced
many conjectures of sufficient difficulty and importance to come to the attention of research mathe-
maticians. Graffiti has been designed by mathematician Siemion Fajtlowicz to make conjectures of a
numerical nature in graph theory. Given a set of well known graph theory invariants, such as the diame-
ter, independence number, rank and chromatic number, Graffiti uses a database of graphs to empirically
check whether one sum of invariants is less than another sum of invariants. If a conjecture passes the
empirical test and Fajtlowicz cannot prove it easily, he forwards it to interested graph theorists.

As an example, conjecture 18 produced by Graffiti stated that, for any graph G:

chromatic_number(G) maximum_degree(G)
+ < +
radius(G) frequency_of_maximum_degree(G)

This was passed to some graph theorists, one of whom found a counterexample. These types of conjecture
are of substantial interest to graph theorists because they are easy to understand, yet they often provide
a significant challenge to resolve. The conjectures are also useful because calculating invariants is often
expensive and bounds on sums of invariants may help bring computation time down.

In terms of adding to mathematical knowledge, Graffiti has been extremely successful. The conjec-
tures it has produced have attracted the attention of scores of mathematicians, including many luminaries
from the world of graph theory. There are over 60 graph theory papers published which investigate Graf-
fiti’s conjectures. Graffiti owes some of its success to the fact that the inequality conjectures it makes are
of a difficult and important type, and that Fajtlowicz himself uses Graffiti and prunes and disseminates
the results to many interested parties. In contrast to NumbersWithNames, to our knowledge, Graffiti is

not available for mathematicians to experiment with themselves.

10

6 Conclusions and Future Work

We have described the NumbersWithNames program which produces interesting conjectures about se-
quences of integers in number theory. We have described the numerous advances over the version in
HR, including a generalised plausibility measure, the ability to transform the given sequence into related
ones to find conjectures about, and the ability to form moonshine conjectures. There are many more
improvements we hope to make, including additional transformations of sequences, and enabling Num-
bersWithNames to interact with computer algebra systems to further empirically check the conjectures
it makes using the computer algebra code supplied with some of the sequences in the Encyclopedia.

We have also reported new results from this data-mining approach. In contrast to Graffiti, however,
where the main user is interested in the results, we are not number theorists, and hence, not only do we
have less interest in the results, we are also not in a position to assess the implications, applications or
importance of the conjectures NumbersWithNames produces. For this reason, we have made the program
available to run online in the hope that research mathematicians and recreational mathematicians will
use it. Hence, the next stage of the project is to attract mathematicians to work both with the program
and with us. We have started this process by making conjectures about some sequences being discussed
on the sequence fans mailing list, and hope to continue this approach by targeting various researchers
with conjectures about sequences of particular interest to them. Finally, we have described how AClam
has been used to plan a proof for a generalised conjecture which arose from a series of conjectures made
by NumbersWithNames, and we hope to pursue this interaction. In particular, we intend to use the
decision procedure techniques soon to be available.

In a seminal 1958 paper [SN58], Newell and Simon made the prediction that:
‘Within ten years a digital computer will discover and prove an important mathematical theorem.’

In our opinion — while some important mathematical theorems have been proved by automated means,
for example the Robbins algebra problem [McC97] — for various reasons this prediction has not yet
come true. Furthermore, only through interaction between conjecture making programs such as Num-
bersWithNames, HR and Graffiti, and theorem provers/planners such as A Clam, will Newell and Simon’s
prediction be fulfilled. We cannot even claim that NumbersWithNames and AClam have discovered and
proved a theorem autonomously, not to mention an important theorem. However, this is a goal of our

project, and one which we believe is within the grasp of modern computational techniques.

Acknowledgments

Simon Colton is also affiliated with the Department of Computer Science at the University of York, UK.
We would like to thank the anonymous reviewers whose comments helped improve the final version of

this paper. This work has been supported by EPSRC grants GR/M98012 and GR/M45030.

11

References

[BvHHS90] A Bundy, F van Harmelen, C Horn, and A Smaill. The Oyster-Clam system. In Proceedings

[CBW00]

[CNT79]

[Col99]

[Col01]

[Faj88]

[Gap00]

[GK90]
[HW38]

[JBO1]

[JKB0O]

[McCO7]

[RSGOS]

[Slo98]

[SN58]

[Zei99]

of CADE-10, pages 647—648. Springer-Verlag, 1990.

S Colton, A Bundy, and T Walsh. Automatic invention of integer sequences. In Proceedings

of the 17th National Conference on Artificial Intelligence, pages 558-563, 2000.

J Conway and S Norton. Monstrous moonshine. Bulletin of the London Mathematical

Society, 11:308 — 339, 1979.

S Colton. Refactorable numbers - a machine invention. Journal of Integer Sequences,

http://www.research.att.com/"njas/sequences/JIS, 2, 1999.

S Colton. Automated Theory Formation in Pure Mathematics. PhD thesis, Division of
Informatics, University of Edinburgh, 2001.

S Fajtlowicz. On conjectures of Graffiti. Discrete Mathematics 72, 23:113-118, 1988.

Gap. GAP Reference Manual. The GAP Group, School of Mathematical and Computational
Sciences, University of St. Andrews, 2000.

D Greene and D Knuth. Mathematics for the Analysis of Algorithms. Birkhauser, 1990.
G Hardy and E Wright. The Theory of Numbers. Oxford University Press, 1938.

P Jani¢i¢ and A Bundy. A general setting for combining and integrating decision procedures

into theorem provers. Journal of Automated Reasoning, 2001. To appear.

M Jamnik, M Kerber, and C Benzmiiller. Towards learning new methods in proof planning.
In Proceedings of the 2000 Calculemus Symposium: Systems for Integrated Computation and
Deduction, 2000.

W McCune. Solution of the Robbins problem. Journal of Automated Reasoning, 19(3):263—
276, 1997.

J Richardson, A Smaill, and I Green. System description: proof planning in higher-order

logic with ACLAM. In Proceedings of CADE-15, pages 129-133. Springer-Verlag, 1998.

N J A Sloane. My favorite integer sequences. In Proceedings of the International Conference

on Sequences and Applications, 1998.

H Simon and A Newell. Heuristic problem solving: The next advance in operations research.

Operations Research, 6(1):1-10, 1958.

P Zeitz. The Art and Craft of Problem Solving. John Wiley and Sons, 1999.

12

