
The FloWr Framework: Automated Flowchart Construction,
Optimisation and Alteration for Creative Systems

John Charnley, Simon Colton and Maria Teresa Llano
Computational Creativity Group, Department of Computing,

Goldsmiths, University of London, UK
ccg.doc.gold.ac.uk

Abstract

We describe the FloWr framework for implementing creative
systems as scripts over processes and manipulated visually as
flowcharts. FloWr has been specifically developed to be able
to automatically optimise, alter and ultimately generate novel
flowcharts, thus innovating at process level. We describe the
fundamental architecture of the framework and provide ex-
amples of creative systems which have been implemented in
FloWr. Via some preliminary experimentation, we demon-
strate how FloWr can optimise a given system for efficiency
and yield, alter input parameters to increase unexpectedness,
and build novel generative systems automatically.

Introduction
One of the main reasons people give for why software
should not be considered creative is because it follows ex-
plicit instructions supplied by a programmer. One way to
reduce such criticisms is to get software to write software,
because if a program writes its own instructions, or the
code of another program, some level of creative responsi-
bility has clearly been handed over. Automated program-
ming techniques such as genetic programming have been
used in creativity projects, such as evolutionary art (Romero
and Machado 2007), and software innovating at process (al-
gorithmic) level has been studied in this context. More-
over, machine learning approaches such as inductive logic
programming (Muggleton 1991) clearly perform automated
programming. In both these cases, programs are generated
for specific purposes. In contrast, we are interested here in
how software can innovate at process level for exploratory
purposes, i.e., where the aim is to invent a new process for a
new purpose, rather than for a given task.

Getting software to write code directly is a long-term
goal, and we have performed some early work towards
this with the invention of game mechanics at code level
(Cook et al. 2013). Such code generation will likely be
organised at module level, so it seems sensible to study
how programs can be constructed in formalisms such as
flowcharts over given code modules, to study creative pro-
cess generation. Flowcharts are used extensively for visu-
alising algorithms, e.g., UML is a standard for represent-
ing code at class level (Rumbaugh, Jacobson, and Booch
2004). There are also a handful of systems which allow
flowcharts to be developed and automatically converted into

code. These include the MSDN VPL (msdn.microsoft.
com/bb483088.aspx), the RAPTOR system (Carlisle et
al. 2004), and IBM’s WebSphere, which allows program-
mers to visualise the interaction between nodes and pro-
duce fully-functional systems on a variety of platforms
(ibm.com/software/uk/websphere). Also, Visual Pro-
gramming systems such as Blockly, (code.google.com/
p/blockly), AppInventor (appinventor.mit.edu) and
Scratch (scratch.mit.edu) allow the structure of a pro-
gram to be described by using different types of blocks.

We could certainly have investigated process-level inno-
vation by implementing software to automatically control
the flowcharting systems mentioned above. However, these
systems have been developed to support human-centric pro-
gram design, and we have had many difficult experiences in
the past where we have wrestled unsuccessfully with pro-
grammatic interfaces to such frameworks. In addition, in
line with usual software engineering paradigms, there is an
emphasis on being able to explicitly specify what programs
do and an expectation of perfect reliability in the execution
of those programs. We are more interested in a flowcharting
system able to be given vague instructions (or indeed, none
at all) and with some level of automation, produce valuable,
efficient flowcharts for generative purposes. For these rea-
sons, we decided to build the FloWr (Flo)wchart (Wr)iter
system from scratch with a clear emphasis on automated op-
timisation, alteration and construction of systems. This pa-
per describes the first release of this framework.

In the next section, we describe the fundamentals of the
framework: how programs are represented as scripts which
can be created and manipulated visually as flowcharts, and
how developers can follow an interface to introduce new
code modules to the system. Following this, we detail a
FloWr flowchart for poetry generation which uses Twitter,
and we use this in an investigation of flowchart robustness.
We then present some preliminary experiments to test the
viability of FloWr automating various aspects of flowchart
design. In particular, we investigate ways in which it can al-
ter and optimise given flowcharts, and we describe an exper-
iment where FloWr invented novel flowcharts from scratch.
Notwithstanding a truly huge search space, we show there
is much promise for process-level innovation with this ap-
proach, and we conclude with a discussion of future research
and implementation work.

ccg.doc.gold.ac.uk
msdn.microsoft.com/bb483088.aspx
msdn.microsoft.com/bb483088.aspx
ibm.com/software/uk/websphere
code.google.com/p/blockly
code.google.com/p/blockly
appinventor.mit.edu
scratch.mit.edu


text.retrievers.ConceptNet.ConceptNet_0
dataFile:simple_concept_net_1p0_sorted.csv
relation:IsA
rhsQuery:animal
minScore:0
#wordsOfType = answers[*]

...WordListCategoriser.WordListCategoriser_0
wordList:child;human;apple;
stringsToCategorise:#wordsOfType
#filteredFacts = textsWithoutWord[*]

text.retrievers.ConceptNet.ConceptNet_1
dataFile:simple_concept_net_1p0_sorted.csv
lhsQueries:#filteredFacts
relation:CapableOf
minScore:0
#propertyFacts = facts[*]

...TemplateCombiner.TemplateCombiner_0
templateText:
What if there was a little c1Texts[*][0]
who couldn’t c1Texts[*][2]?
numRequired:1000
c1Texts:#propertyFacts
#whatifs1 = instantiatedTemplates[r5]

utility.saving.TextSaver.TextSaver_0
dir:/Output/Flow/whatifs
textsToSave:#whatifs1

Figure 1: Ideation script and corresponding flowchart

The FloWr Framework
We aim to use the FloWr framework to investigate automatic
process generation via the combination of code modules. As
discussed in the subsections below, our approach has been
to implement a number of such code modules, which we
call ProcessNodes, engineer an environment where scripts
direct the flow of data from module to module, and develop a
graphical user interface (GUI) to enable visual combination
of ProcessNodes into scripts using a flowcharting metaphor.

Individual ProcessNodes
Focusing on generative language systems, we have imple-
mented a repository of 39 ProcessNodes for a variety of
tasks, from the generation of new material, to text retrieval,
to analytical and administrative tasks. For instance, in the
repository, there is a ProcessNode for downloading tweets
from Twitter, one for performing sentiment analysis, and
one for simply outputting text to a file. A new node must
extend the Java ProcessNode base class, by implementing
its abstract process method, which will be called whenever
the module is executed. The developer can write whatever
software they see fit in the node, and this may call external
code in any language. The developer can specify certain in-
put parameters for the process, as public fields of the class,

along with an optional list of allowed or default values for
each parameter. As mentioned below, the scripting mech-
anism enables variables to be specified, which hold output
from processes, and can be substituted in as the input pa-
rameters of other nodes. This facilitates the flow of data.
At runtime, using Java’s reflection mechanism, FloWr will
set each ProcessNode’s parameters according to the current
state of processing, i.e., explicit assignments of the current
value of variables to input parameters, prior to calling the
process method for the node.

The ProcessNode superclass provides a number of utility
methods that a node developer can use during processing,
such as determining the local location of the data directory
which holds non-code resources. There are also methods for
reporting processing errors during runtime, which develop-
ers can use to neatly handle exceptions and other failures.
The process method of each ProcessNode returns an object
of type ProcessOutput which holds all the output from the
node, hence developers create a Java class that extends the
ProcessOutput base class. This facilitates internal FloWr
functionality for determining the types of output variables
and checking whether a script specifies passing objects of
the right type from one node to another (again using Java re-
flection). Developers can use bespoke or existing classes as
fields within output classes, so they can create more com-
plex data-structures for node output. Developers should
be aware, however, that most nodes take as input primitive
types such as integers and strings, and collections of these,
so if they want the output from their nodes to be used by oth-
ers, their ProcessOutput classes will probably need to have
fields at some level in a standard format.

A Scripting Mechanism
A FloWr system is a collection of task-specific Pro-
cessNodes, with a description of how data from each node is
selected as input to others, expressed using a script syntax.
An example script, which has been edited a little to improve
clarity, is given in figure 1. The functionality of this script is
described in the subsection on automated optimisation. Each
paragraph of the script describes a ProcessNode by specify-
ing its type, configuration and output. The first line is the
type of node, which refers to the Java class called when that
node is run in a system. In figure 1, the first process uses
the ConceptNet class, from the text.retrievers package. Suf-
fixes are used to differentiate between multiple instances of
the same node type in a script. When a script is parsed,
each type must be an instantiable compiled subclass of Pro-
cessNode in the stated package, which must also contain a
valid ProcessOutput subclass.

The next lines in the paragraph specify how the input
parameters should be initialised at runtime as name:value
pairs. The name indicates the parameter to be initialised,
and the value can be either a simple assignment, or a vari-
able representing some output from another node. Script
parsing checks that each name refers to a publicly acces-
sible field of the ProcessNode class, which can be validly
assigned with the specified value or the value of the variable
indicated. Default parameter assignments are used where a
parameter value is blank. Node developers can define any



parameters, so they could develop a single node that oper-
ates with various input types, to build more robust systems.

Variable definitions are a #-prefixed alphanumeric label
and an output specifier for a particular part of the output
from a process. As mentioned above, each ProcessNode
class must have an associated ProcessOutput class. The out-
put specifier refers to the fields defined within this output
class, which will be populated by the node at runtime. In its
simplest form, the specifier indicates a particular field to as-
sign to the variable. Alternatively, they can be separated by
dots, where each segment is a field relative to the specifier
to its left. Where the indicated field is a list, square brackets
are used to indicate a selection specifier, which identifies a
subset of elements to be assigned to the variable. The ac-
ceptable selection specifiers are: *: all elements; fn: the
first n elements; ln: the last n elements; mn: the middle n
elements; and rn: n randomly chosen elements.

When a script is run, all processes are checked for syn-
tax errors and data-type inconsistencies. FloWr determines
the process run order by inspecting dependencies between
output variables and input parameters, and errors are raised
whenever there are problematic loops in a script. FloWr
then steps through each node in the run order by instanti-
ating an appropriate ProcessNode object, assigning its pa-
rameters according to the script, calling its process method
to execute the node, and storing the output. In the exam-
ple script of figure 1, we see that the ConceptNet 0 Pro-
cessNode has output with an answers field, which is a
list. The whole list (indicated by answers[*]) is assigned
to the variable #wordsOfType, which is passed into the
WordListCategoriser 0 ProcessNode as the input parame-
ter stringsToCategorise. In this simple script, each
node except the last one assigns a single aspect of its output
to a variable, which is passed onto the next node.

A Flowcharting Interface
The FloWr GUI shown in figure 2 is the primary system
development tool, where flowcharts are used to visually rep-
resent the interaction between ProcessNodes. The interface
has several components. Firstly, the central panel displays
the flowchart currently being worked upon, with individual
ProcessNodes shown as boxes and the arrows between them
indicating the transfer of data. The flowchart in figure 2 – the
functionality of which is described in the next section – has
16 nodes of 13 different types, with colour coding indicat-
ing nodes of the same type or which perform similar tasks.
For instance, blue boxes in figure 2 represent ProcessNodes
which categorise texts (using word sense, sentiment, regu-
lar expressions and a user-supplied word list). To add a new
node to a flowchart, the user right clicks the main panel and
chooses from a series of popup menus. As might be ex-
pected, flowchart boxes can be dragged, resized, deleted,
copied and renamed, and multiple boxes in sub-charts can
be selected, moved, resized and deleted simultaneously.

When a box is clicked, it gains a thick grey border, and the
arrows going into/out of it gain circles, which when clicked
populates the mappings (upper) internal frame in the GUI
with the output variables and input parameters of the two
ProcessNodes joined by the arrow. The mappings between

nodes can be edited by hand, and arrows are automatically
generated whenever an output variable is used as an input
parameter for another node. Clicking on a box populates the
mappings frame with the input variables and output param-
eters for that ProcessNode, and populates the output (lower)
internal frame with the values of the output variables, if they
have previously been calculated via a run of the system. In
figure 2, we see that the user previously selected the output
for the SentimentSorter node, (which is a poem about being
abusive) in the output frame. They then selected the circle
on the arrow between two nodes, and the output variables
and input parameters for LineSplitter and SentimentSorter
were displayed accordingly in the mappings frame.

A small black panel containing a play and stop button for
executing and halting the script is shown at the top right of
the flowchart panel. When the user has chosen to execute
the flowchart multiple times from a menu, a number indi-
cating which run is executing is shown in this panel (the
number 17 in figure 2). The user can double click a node,
and FloWr will run all the processes leading into that node,
including it, but not nodes which occur later in the script
run order. When the flowchart is running, the node which
is actually executing is given a red border: in figure 2 the
TextRankKeyphraseExtractor node is running. Nodes can
take some time to finish executing, and it is often useful for
their output, and the output for all the nodes earlier in the
flowchart, to be frozen, i.e., calculated once and stored rather
than generated when that process is run again. This can be
done using the interface and is indicated with a pushpin in
the flowchart box: in figure 2, the Twitter node has been
frozen. The pushpins in the mappings frame and the output
frame can be used to stop their context from changing when
boxes on the flowchart are clicked.

An Example FloWr System
We have used FloWr to hand-craft a number of systems, in-
cluding flowcharts for poetry generation in a manner similar
to that of (Colton, Goodwin, and Veale 2012), where news-
paper articles were manipulated to produce poems. We have
also used FloWr to perform automated theory formation us-
ing the same production rule-based method employed by the
HR system (Colton 2002), and we have re-implemented as-
pects of The Painting Fool software (Colton 2012). Finally,
as discussed in the next section, we have used FloWr scripts
to produce fictional ideas, with experiments using this given
in (Llano et al. 2014a) and (Llano et al. 2014b). In each of
these instances, we have developed a fully-operational sys-
tem and the FloWr GUI has enabled a clear visualisation
of the overall system, enabling us to design, edit and tweak
each implementation. The ProcessNodes required and the
flowcharts implementing these systems are available in the
FloWr distribution.

The flowchart in figure 2 produces poems as a collec-
tion of related tweets from Twitter in a relatively sophisti-
cated way. Execution begins with a Dictionary ProcessNode
which selects all the 5,722 words from a standard dictio-
nary with a frequency of between 90% and 95%, with word
frequency determined using the Kilgarriff database (Kil-
garriff 1997), which was mined from the British National



Figure 2: The FloWr flowcharting graphical user interface.

Corpus. Such words are relatively common but not too
common or too uncommon in the language. Next in the
flowchart, a WordSenseCategoriser selects the 772 words
that are adjectives (in terms of their main sense) as per the
British National Corpus tagset (Leech, Garside, and Bryant
1994). A SentimentCategoriser node then splits the adjec-
tives into categories based upon how positive or negative a
word is, using the Afinn sentiment dictionary (fnielsen.
posterous.com/tag/afinn) expanded by adding syn-
onyms from WordNet. From the list of 211 negative words,
i.e., scoring -1 or less for valency, a single word is randomly
chosen as the poem theme, using the variable selection syn-
tax [r1] in the underlying script, as described above.

The Twitter ProcessNode accesses the Twitter web ser-
vice through the Twitter4J library (twitter4j.org), and
retrieves a maximum of 1,000 tweets containing the theme
word – there may be less if the word is not mentioned
in many recent tweets. Tweets are cached to make re-
trieval quicker later on. Also, as part of the retrieval pro-
cess, the tweets are filtered to remove copies and tweets
containing a word which cannot be pronounced, as per
the CMU pronunciation dictionary (CPD, at www.speech.
cs.cmu.edu/cgi-bin/cmudict), or which cannot be
parsed using the Twokenize tokenizer (bitbucket.org/
jasonbaldridge/twokenize). We have found that the
90-95% word frequency previously mentioned ensures that
there are usually sufficient tweets (counted in the hundreds)
after the filtering process, but that the tweets tend to be less
banal than usual, as the usage of a somewhat uncommon
word requires some thought.

The retrieved tweets are used in two ways. Firstly, a
TextRankKeyphraseExtractor node extracts keyphrases us-
ing an implementation (lit.csci.unt.edu) of the Tex-
tRank algorithm (Mihalcea and Tarau 2004) over the entirety
of the tweets collated as a paragraph of text. As an example,
the poem theme in the run presented in figure 2 was ‘abu-
sive’, and the keyphrases of ‘abusive husband’, ‘abusive fa-
ther’ and ‘abusive boyfriend’ were extracted. Secondly, the
tweets are passed through a triplet of WordListCategoriser
nodes which are used to exclude tweets containing unde-
sired words. The first filter removes tweets containing any
of a pre-defined list of first names, discarding many tweets
about particular people, which are too specialised for our
purposes. The second removes tweets containing Twitter-
related words such as retweet, and the third removes tweets
containing certain profanities. The RegexCategoriser Pro-
cessNode then splits the tweets into two sets based upon
whether or not they contain personal pronouns (I, we, they,
him, her, etc.). Only tweets containing personal pronouns
are kept, which helps remove commercial service announce-
ments, which are dull. In the ‘abusive’ example, from the
1000 tweets retrieved, 110 were removed as duplicates or
for being unpronounceable/non-tokenisable. 80 were further
removed for including first names, 33 for including Twitter
terms, 22 for including profanities, and 262 were removed
because they included no personal pronouns, leaving 493
tweets for the construction of stanzas in the poem.

The remaining tweets are processed by a RhymeMatcher
node which finds all pairs of tweets with the same two
phonemes at the end, when parsed by the CPD. The num-

fnielsen.posterous.com/tag/afinn
fnielsen.posterous.com/tag/afinn
twitter4j.org
www.speech.cs.cmu.edu/cgi-bin/cmudict
www.speech.cs.cmu.edu/cgi-bin/cmudict
bitbucket.org/jasonbaldridge/twokenize
bitbucket.org/jasonbaldridge/twokenize
lit.csci.unt.edu


On Being Eerie

Eerie me.
Eerie feeling.
Bit eerie.

I hate the basement level of buildings.
You always lose reception and it’s always quiet and eerie.
This doesn’t quite capture the eerie pink glow of this morning.
Is pop culture satanic?
In a spiritual (not religious) sense?
I don’t really know.
But man, there are some eerie parallels.
It’s concerning.
I find it very eerie when someone is tinkering with your teeth and telling jokes.
Or is that just me?

I hate winter and the cold, but I love how silent the night is during cold winter weather.
It’s eerie, but peaceful.
Old school!
It was always eerie.
No one around, and completely quiet.
It’s like being on the wrong end of the apocalypse.
Experiencing the eerie light of total eclipse.
I’m going through it today.
The fact that I’m talking about my grandma in a past tense is eerie and weird to me.

I saw weird stuff in that place last night.
Weird, strange, sick, twisted, eerie, godless, evil stuff.
And I want in.
Yes - that is quite an eerie sound!
It’s so eerie listening to the crying in the background.
I can understand that.
It just feels eerie to have it haunt you (word-for-word) by different users.

I hope the cloud stayed away for you.
Wow, how was the eerie darkness?
I thought I told you.
Oops.
Weird, eerie, strange portraits and locations.
An antique metal ship and a candle make for eerie (and awesome) decorations.
I mean the art direction is eerie.
I’m pretty sure it’s hogwash.

Bit eerie.
Eerie feeling.
Eerie me.

Figure 3: Example Twitter poem: On Being Eerie.

ber of matching phonemes can be changed to increase or
decrease the amount of rhyming. From these, 250 pairs
are randomly chosen (or the entire set, if less than 250).
The tweets are likewise processed by the FootprintMatcher
node, which counts the number of syllables, again using
the CPD, and finds all pairs of tweets with the same foot-
print. As before, 250 pairs of tweets are chosen randomly.
Next, LineCollator constructs sets of 16 different tweets in
quadruples of the form ABBA, where the As are a pair with
equal footprints and the Bs are a pair which rhyme. An ex-
ample quadruple is as follows (note the two central lines
rhyme, and the outer lines both have 17 syllables):

I hope the cloud stayed away for you. Wow, how was the eerie darkness?
I thought I told you. Oops. Weird, eerie, strange portraits and locations.
An antique metal ship and a candle make for eerie (and awesome) decorations.
I mean the art direction is eerie. I’m pretty sure it’s hogwash.

The TemplateCombiner node brings all the processed in-
formation together into a poem based upon a specified poem
template. The inputs to this process are the theme word
which becomes part of the poem title, the keyphrases which

Freq(%) Structure Neg. Stanzas Yield(%)
85-90 FRRF false 4 94
90-95 FRRF true 4 94
80-85 FRRF false 4 90
90-95 R1R2R2R1 false 4 80
90-95 R1R2R2R1 true 4 74
90-95 R1R2R2R1 false 6 46
90-95 R1R2R2R1 true 6 12

Table 1: Yield results for Twitter poetry flowchart.

provide a context at the top and (reversed) at the bottom of
the poem, and the quadruples from LineCollator, which each
form a stanza of the poem. TemplateCombiner is told to
produce 20 poems by choosing 20 sets of quadruples from
LineCollator randomly. The LineSplitter ProcessNode takes
each poem and splits any line where there is a period (tweets
often contain two or more sentences), which tends to make
the poems more poem-shaped. Finally, the SentimentSorter
node selects the poem with the most negative affect, which
is saved to a file by the TextSaver ProcessNode. This is given
the theme word as an input, and the file is so named.

In general, we have found that these Twitter poems are
surprising and interesting. In particular, the slight rhyming
in the centre of the poems is noticeable, and the multiple
voices expressed through 16 different tweets, coupled with
the often rushed nature of the tweets can give the poems a
very dynamic feel. Another example poem is given in figure
3, where the theme was ‘eerie’. This poem was recited as
part of a poetry evening during a festival of Computational
Creativity, in Paris in July 2013 (Colton and Ventura 2014).

The nature of the flowchart, including the ProcessNodes,
the I/O connections and the parameterisation of the pro-
cesses was carefully specified and tweaked by hand over
many hours, to produce a poem most of the time, for dif-
ferent adjectives. One of the benefits of the flowcharting
approach is that variations can be easily tried out – but it
would be frustrating if the yield of poems wasn’t consistent.
To investigate the robustness of the flowchart, we varied the
word frequency parameters in the Dictionary to test the re-
trieval of tweets containing less common words. We also
made the poem construction more difficult. Firstly, we in-
troduced all-rhyming stanzas (R1R2R2R1) rather than the
footprint-rhyming structure (FRRF ). Secondly, we intro-
duced an additional SentimentCategoriser node to ensure
that only tweets with an average (Neg)ative valency were
used. Finally, we increased the number of stanzas from 4
to 6. For each of 7 setups given in table 1, we provide the
yield produced from 50 runs of the flowchart. We note that
the flowchart is fairly robust to lowering the theme word fre-
quencies, but the volume of tweets didn’t support well the
construction of more complex poems. In fact, only 12% of
runs resulted in a poem when six R1R2R2R1 stanzas with
only negative tweets were sought. This indicates that there
is a limit to how far a successful flowchart can be tweaked
before it loses its utility.



Automation Experiments
We present here some preliminary experiments to automati-
cally alter, optimise and generate flowcharts. As mentioned
previously, a driving force for the project is to study the
potential of automated process generation. FloWr simpli-
fies the process of constructing a system but, as highlighted
in the previous section, fine-tuning a chart can be a labo-
rious process. For example, the flowchart/script in figure
1 was developed by hand for a project where the Con-
ceptNet database of internet-mined facts (Liu and Singh
2004) was used for fictional ideation in the context of
Disney cartoon characters, as described in (Llano et al.
2014a). Given a theme word like ‘animal’, the flowchart
uses the ConceptNet1 node to find all Xs for which there
is a fact [X,IsA,animal], removes spurious results, such
as [my husband,IsA,animal] with the WordListCategoriser,
and then for a given relation, R, finds all the facts of the
form [X,R,Y], using the ConceptNet2 node. To produce the
fictional idea, it inverts the reality of each fact using the Tem-
plateCombiner node to produce an evocative textual render-
ing. For instance, the fact that [cat,Desires,milk] becomes
“What if there was a little cat who was afraid of milk?”.

In further testing, we substituted ‘animal’ for other theme
words such as ‘machine’, and produced ideas such as:
“What if there was a little toaster who couldn’t find the
kitchen” (by inverting the LocatedNear relation in this case).
There are 49 ConceptNet relations and a large number of
couplings of these with theme words, many of which yielded
no results. For instance, we found no facts about types of
machines and the Desires relation, presumably as machine
don’t tend to desire things. Focusing on animals, it took
around 2 hours to produce the first working flowchart which
produced a non-zero yield of facts which could be usefully
inverted for the invention of Disney characters. One of the
benefits of automation we foresee would be a substantial re-
duction in this type of manual fine-tuning.

Flowcharts can be constructed and altered in several ways.
ProcessNodes can be added, removed or replaced with alter-
natives. Parameterisations of nodes and the links between
them can be amended by modifying, creating or deleting
variables and changing input settings. The space of all pos-
sible constructions and alterations is vast and, at this early
stage, we have restricted ourselves to a subset. Specifically,
we have considered changes to parameterisations of existing
flowcharts and we describe some experiments in the follow-
ing section, followed by how these can be guided to achieve
particular optimisation objectives. After this, we consider
constructing flowcharts from scratch by sequentially adding
additional ProcessNodes. In all cases, FloWr has generated
flowcharts representing novel and interesting creative tasks
whilst avoiding an element of manual construction effort.

Figure 4: Flowchart for automated regex generation.

S NW FWLen WLCh FLCh LLCh Yield(%) Av.
1 3 3-6 equal equal none 55 48.6
2 3 3-6 equal any none 42 12.1
3 3-5 3-6 any any none 24 9.24
4 3 3-6 incr. incr. none 38 5.1
5 3-5 3-6 any any any 0 0

Table 2: Regex generation test yields (tongue twister texts).

Flowchart Alteration
When motivating the building of the FloWr framework in the
introduction, we noted that we want the approach to produce
unexpected results, with FloWr scripts being somewhat un-
predictable. One way to increase unexpectedness is to ran-
domly alter input parameters to ProcessNodes at run-time.
We investigated this via the generation of simple tongue-
twister texts, by extracting word sequences using regular ex-
pressions. We implemented a RegexGenerator ProcessNode
which produces regular expressions (regexes) such as:
\bs[a-zA-Z]4\b\s1,\bs[a-zA-Z]5\b\s1,\bs[a-zA-Z]6\b

When applied to a corpus of text, this regex extracts all
triples of words of length 5, 6 and 7 which begin with the
letter ‘s’. We applied this to a corpus of 100,000 Guardian
newspaper articles, and it returned 21 triples, such as ‘small
screen success’ and ‘short skirts showing’.

The input parameters to RegexGenerator specify the num-
ber of words (NW) in the phrases sought, what the first
word’s length (FWLen) should be, and how the word lengths
should change (WLCh): either increasing, decreasing, stay-
ing the same, or no(ne) change. The parameters also en-
able the specification of the first letter of the first word,
and how subsequent first letters should change lexicograph-
ically (FLCh): increasing, decreasing, staying the same or
no(ne) change. The last letter changes (LLCh) can simi-
larly be specified. Importantly, FloWr can be instructed to
choose each parameter randomly from a given range. For
start and end letters, this range is a-z, for word length and
letter changes it is {increase, decrease, equal, none} and
the integer value for NW and FWLen can be specified to
be within a user-given range.

We implemented the flowchart in figure 4 to input the
whole Guardian corpus and a generated regular expression
in the RegexPhraseExtractor node, and output the resulting
text (if any) to a file. We ran five sessions with different
input parameter ranges for the RegexGenerator node. For
each session, we specified that the first letter of the first
word should be chosen randomly. In each session, we ran
the flowchart 100 times and recorded the yield as the per-
centage of times when text was actually produced. We also
recorded the average number of lines of text produced (i.e.,
the average number of hits for the regular expression in the
corpus). The results are given in table 2. We see that (S)etup
5 is completely unconstrained and the space which is ran-
domly sampled from is dense in poor regexes which have no
hits in the corpus: the yield is zero. However, with some
constraining of the regex ranges allowed, the yield increases
almost to 50%. Also, as expected, the average number of



hits increased in line with the yield. The following are two
tongue twisters found in the results for setups 1 and 4:

posted pretax profit cancer despite everyone
please please please classy devices emerging
petrol prices played carbon dioxide expelled
profit public policy carbon dioxide emission
poorer people pushed choice defense everyone

In other experiments, with the ideation flowchart of figure
1, we looked at automatically changing the theme word. To
do this, a WordNet ProcessNode was used to find hypernyms
of animal, which returned the words organism and being.
We then requested the hyponyms of each of these, which
generated 87 alternative themes, which were substituted for
the theme in the flowchart. Several of the themes produced
a high yield of invertible facts, with 13 theme/relation com-
binations generating more facts than the highest found by
hand. Three of these used theme word person, e.g., with
the CapableOf relation, which generated 2,154 ideas such
as the concept of actors being able to face an audience. Sim-
ilarly, the theme words individual and plant had high yields.
However, one word that was identified automatically using
this method was flora, which gave interesting invertible facts
about trees, such as being homes for nesting birds and squir-
rels. These were not considered in our manual experiments
using the plant theme. In a similar way, we used Concept-
Net to find theme words by inspecting all the IsA relations in
its database, from which it identified 11,000 themes. Using
these, we found the highest yield with the theme mammal
and the relation NotDesires, which we hadn’t found manu-
ally. This generated 568 facts, mainly about people, e.g., the
ideas that people don’t want to be eaten or bankrupt, both of
which led to interesting fictional inversions.

Optimising Flowcharts
We performed some experiments in automating the task of
finding high-yield configurations for the ideation flowchart
of figure 1. To do this, we provided a list of themes and
asked FloWr to consider all possible pairings of theme and
ConceptNet relation. To assess the yield of a ProcessNode,
FloWr uses Java reflection to traverse the structure of its out-
put object and count the objects and sub-objects in individ-
ual fields or in lists. We have found this to be a reliable
measure of output quantity, particularly when assessing rel-
ative sizes. It is also general, and will produce a useful yield
measure irrespective of the nature of the node and its output.
The manual process identified the theme word animal and
the relationship CapableOf as producing the highest yield
of 530 usable facts. The automated approach also identi-
fied this combination, but it highlighted a more productive
relationship for animal, namely LocatedAt, which provides
1,010 facts. This combination had been overlooked during
the manual process, in favour of using the LocatedNear re-
lationship, which produced only 39 facts.

We also investigated optimising flowcharts for efficiency.
Given a target time reduction and minimum output level for
ProcessNodes in a given flowchart, we investigated an ap-
proach which identifies small local changes to input param-

eters that have the most global impact on the system. Firstly,
the nodes are ordered according to their increasing contribu-
tion to the overall execution time. Considering the slowest
ProcessNode, P , first, an attempt is made to establish if the
time taken is a consequence of the amount of data it receives,
by halving the data given and comparing execution times. If
input data is causing P ’s slow speed, the ProcessNode(s)
which produced that input into P are re-prioritised higher
than P in the ordering. Moreover, a local goal for each Pro-
cessNode is assigned, which is either to reduce its execu-
tion time or the size of its output. Then, local reconfigura-
tions consider incremental changes to numeric and optional
parameters until the local goals, or failure, have been met.
Any successful local reconfigurations are then applied to the
global system and reported to the user if they achieve the
overall goals. Multiple tests are used at each stage to con-
firm that the reported results are consistent.

We successfully applied this approach to the Twitter po-
etry generator, where it identified that the high average base
execution time of 10 seconds was caused by the WordList-
Categoriser nodes processing a high number of tweets from
the Twitter node. It applied an iterative process, which re-
duced the numRequired parameter by a given percentage for
a pre-defined number of steps, noting each time that the node
output yield was reduced, eventually settling on a numRe-
quired setting of 63. It then tested this on the global sys-
tem and found that this reduced the overall runtime to 630
milliseconds, whilst still successfully generating poems. In
a similar experiment, we optimised another poetry system
which used Guardian newspaper articles as source material,
as in (Colton, Goodwin, and Veale 2012). The optimisation
method found that one node could be optimised by reduc-
ing its input size, which led to the altering of another node’s
input parameters, and a 40% reduction in overall execution
time, while the flowchart still produced poems.

Flowchart Construction
We have investigated how to construct FloWr systems
from scratch. Working in the context of producing poetic
couplets, we tested a method which could generate a system
with three to five nodes taken from these sets respectively:
{Twitter, Guardian, TextReader}, {WordSenseCategoriser, Senti-
mentCategoriser}, {TextRankKeyphraseExtractor, RegexPhrase-
Extractor}, {WordSenseCategoriser, SentimentCategoriser},
{FootprintMatcher, RhymeMatcher}. We used our experience
of which nodes work well together to create this structure,
and to specify a number of possible options for the input
parameters. For some nodes, we were restrictive, e.g., we
specified that the Guardian node should use a specific date
range for selecting articles and always return the same
number. For other nodes, we allowed FloWr to use any of
the parameter values from the optional lists provided by
the node developer. For the Twitter node, we chose five
dictionary words randomly for queries and TextReader was
directed to use a set of Winston Churchill speech texts.

Despite these limitations, there are still a huge number of
possible combinations to explore. For example, there are
108 possible node combinations, 27,000 parameter combi-
nations and over 261 million variable definition combina-



Figure 5: An automatically generated rhyming couplet system.

tions. The size of this restricted subset makes a brute-force
approach intractable, given that many nodes have execution
times of over a second. Hence, we tried a depth-first search
of all possible systems, by choosing node combinations ran-
domly and configuring each node with input parameters cho-
sen from those allowed at random. Next, the method con-
siders the possible data links between nodes by considering
each pair in turn. The set of variables that could be defined
in the scripting syntax for the earlier node in the system is
compared with the input parameters for the following node.
Only those where the output variable type and the input pa-
rameter types match will be syntactically valid, and these are
chosen from randomly and applied to the script.

We generated 200 scripts using this process and tested
each to see whether it produced output from the final node.
We found that 17 (8.5%) worked successfully and produced
poetic couplets. Of these, 8 contained 3 nodes, 8 contained 4
nodes and one – shown in figure 5 – contained 5 nodes. This
script takes Guardian articles from the first week of 2012,
extracts the neutral texts in terms of sentiment, and identi-
fies all their key phrases. It selects keyphrases beginning
with an adjective and outputs pairs of phrases with the same
syllable footprint, producing these:

actual bodily harm chief inspector working dangerous driving
metropolitan police domestic violence potential recruits

The yield from the 17 scripts varied widely from one to over
4 million couplets. The most commonly used ProcessNode
in the successful flowcharts was TextRankKeyphraseExtrac-
tor, which was used 28% of the time, followed by Footprint-
Matcher, used 23% of the time. FootprintMatcher is more
prevalent than RhymeMatcher at 5%, because there are more
pairs of phrases with the same number of syllables than pairs
which rhyme. The RegexPhraseExtractor fails to appear,
due to limited input data, i.e., there were no strings satisfying
the regular expressions sought, due to the limited amount of
text available. We experimented with further restricting the
types of nodes that could be selected. In particular, using in-
formation about the frequency of nodes in successful scripts
from the first experiment, we managed to improve the yield
of working scripts to 18.5% by allowing only WordSense-
Categoriser nodes to be used for categorisation.

One particular (four-node) script caught our eye. It takes
Churchill texts, extracts keyphrases, keeps only those where
the first word has extreme sentiment, i.e., ≥ 2 or ≤ −2,
then outputs pairs with the same footprint, such as: [great air
battle:despairing men] and [greater efforts:greater ordeals].
The 52 poetic couplets that this script generated provided the
starting point for a poem written by a collaborator: Russell
Clark selected a subset of these pairs, then combined and
ordered them into a piece entitled Churchill’s War, which is

Churchill’s War

Good many people, great differences
good many people: outstanding increase.
Great organisations, greater security
greater security: terrible position

Great combatants, brilliant actions
Great preponderance, greater efforts

Great air battle, despairing men
Great air battle, brilliant actions

Great Britain, good account
Great Britain, good reason

Great flow: Great war
Great flow: Good men

Chess proceeds, good reason
Chess proceeds: victory

Figure 6: A poem based upon the output from an automati-
cally generated process for poetic couplet generation.

shown in figure 6. The poem was one of four submitted for
analysis by poetry experts as part of a BBC Radio 4 piece on
Computational Creativity (Cox 2014), although a different
poem was ultimately read out and analysed.

Conclusions and Future Work
The FloWr framework enables fairly rapid prototyping of
flowcharts for creative systems. We presented here funda-
mental details of how code modules can be implemented
and combined via scripts using a flowcharting front end. We
presented flowcharts for producing poems, fictional ideas,
tongue twisters and poetic couplets, which re-use nodes for
retrieving, categorising, sorting, combining and analysing
text. We have performed some experimentation to assess the
potential for automating aspects of flowchart design, both
to help users construct, vary and optimise flowcharts, and
to highlight the potential for FloWr to automatically con-
struct novel processes. The ultimate aim of this project
is to provide an environment which encourages third party
ProcessNode and flowchart developers to contribute mate-
rial from which FloWr can learn good practice for innovat-
ing in automatic process design. We have already started
implementing functionality which enables FloWr to learn
flowchart configurations which are likely to produce re-
sults. This has aspects in common with other knowledge-



based system design projects, such as Rebuilder (Gomes et
al. 2005). Ultimately, FloWr will reside on a server, con-
stantly generating, testing and running novel system config-
urations in reaction to people uploading new ProcessNodes
and scripts. We intend to have a large number of nodes cov-
ering a variety of different individual tasks in many domains.
For instance, we have a variety of NLP nodes, e.g., for Porter
Stemming (Porter 1980) and we will be extending this to
cover nodes for other tasks, such as tagging and chunking.

The first release of the FloWr framework, along with
dozens of ProcessNodes and numerous flowcharts is avail-
able at ccg.doc.gold.ac.uk/research/flowr. In fu-
ture releases, we plan a number of improvements to the un-
derlying framework, including much more automation in the
system, given the promise shown for this in the experiments
described here. The systems that can be implemented cur-
rently are quite limited, and we plan to introduce additional
programmatic constructs, such as framework level control of
looping, and ProcessNode level control of conditionals. We
will also implement useful functions, such as FloWr running
a sub-flowchart repeatedly until it produces a particular yield
for the rest of the flowchart, and translating variables, e.g.,
from ArrayList<String> to String[], to increase
flexibility. We will test different search techniques to tame
the vast space of flowchart configurations, so that FloWr can
reliably generate interesting novel flowcharts, and we will
implement the optimisation and alteration routines we have
experimented with as default functionalities. We also plan
to implement more entire systems in FloWr, in particular we
expect The Painting Fool art program (Colton 2012) to even-
tually exist as a series of flowcharts in FloWr. Also, we have
started to port the HR3 automated theory formation system
(Colton 2014) to FloWr. We have experimented with HR3 to
add adaptability to the Twitter poetry generation flowchart:
using concept formation over a given set of tweets, HR3 can
successfully find a linguistic pattern which links subsets of
tweets, that can be extracted and turned into poem stanzas.

The flowchart in figure 2 is a creation in its own right.
To some extent, the value of such flowcharts exists over and
above the quality of the output they produce. That is, the
way in which the flowchart constructs artefacts is an inter-
esting subject in its own right. For reasons of improving
autonomy, intentionality and innovation in computational
systems, we believe that software which writes software
– whether at code-level or via useful abstractions such as
flowcharts – should be a major focus in Computational Cre-
ativity research. Automated programming has been adopted,
albeit in restricted ways, in highly successful areas of AI
such as machine learning, and we believe there will be ma-
jor benefits for the building of creative systems through the
modelling of how to write software creatively.

Acknowledgments
This work has been supported by EPSRC Grant
EP/J004049/1 (Computational Creativity Theory), and
EC FP7 Grant 611560 (WHIM). We would like to thank
Russell Clark for his help with the poetry generation
flowcharts and curating their output. We would also like to
thank the anonymous reviewers for their helpful comments.

References
Carlisle, M.; Wilson, T.; Humphries, J.; and Hadfield, S.
2004. RAPTOR: Introducing programming to non-majors with
flowcharts. Journal of Computing Sciences in Colleges 19(4).
Colton, S.; Goodwin, J.; and Veale, T. 2012. Full-FACE po-
etry generation. In Proceedings of the International Conference
on Computational Creativity.
Colton, S. 2002. Automated Theory Formation in Pure Mathemat-
ics. Springer.
Colton, S. 2012. The Painting Fool: Stories from building an
automated painter. In McCormack, J., and d’Inverno, M., eds.,
Computers and Creativity. Springer.
Colton, S. 2014. The HR3 discovery system. In Proceedings of the
AISB symposium on computational scientific discovery.
Colton, S. and Ventura, D. 2014. You Can’t Know my Mind: A
Festival of Computational Creativity. In Late Breaking Proceed-
ings of the International Conference on Computational Creativity.
Cook, M.; Colton, S.; Raad, A.; and Gow, J. 2013. Mechanic
miner: Reflection-driven game mechanic discovery and level de-
sign. In Proceedings of the EvoGames workshop.
Cox, T. (Presenter) Can a Computer Write Shakespeare? BBC
Radio 4 documentary, first aired on 15th May 2014.
Gomes, P.; Pereira, F.; Paiva, P.; Seco, N.; Carreiro, P.; Ferreira, J.;
and Bento, C. 2005. Rebuilder: a case-based reasoning approach
to knowledge management in software design. Engineering Intelli-
gent Systems for Electrical Engineering & Communications 13(4).
Kilgarriff, A. 1997. Putting frequencies in the dictionary. Interna-
tional Journal of Lexicography 10(2).
Leech, G.; Garside, R.; and Bryant, M. 1994. CLAWS4: The
tagging of the British National Corpus. In Proceedings of the 15th
COLING.
Liu, H., and Singh, P. 2004. Commonsense reasoning in and over
natural language. In Proceedings of the 8th International Confer-
ence on Knowledge-Based Intelligent Information and Engineer-
ing.
Llano, M. T.; Hepworth, R.; Colton, S.; Charnley, J.; and Gow, J.
2014. Automating fictional ideation using ConceptNet. In Pro-
ceedings of the AISB Symposium on Computational Creativity.
Llano, M. T.; Hepworth, R.; Colton, S.; Gow, J.; Charnley, J.;
Lavrač, N.; Žnidaršič, M.; Perovšek, M.; Granroth-Wilding, M.;
and Clark, S. 2014. Baseline Methods for Automated Fictional
Ideation. In Proceedings of the International Conference on Com-
putational Creativity.
Mihalcea, R., and Tarau, P. 2004. Textrank: Bringing order into
texts. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing.
Muggleton, S. 1991. Inductive Logic Programming. New Genera-
tion Computing 8(4).
Porter, M. 1980. An algorithm for suffix stripping. Program 14(3).
Romero, J., and Machado, P. 2007. The Art of Artificial Evolution.
Springer.
Rumbaugh, J.; Jacobson, I.; and Booch, G. 2004. The Unified
Modeling Language Reference Manual. Pearson Higher Education.

ccg.doc.gold.ac.uk/research/flowr

	Introduction
	The FloWr Framework
	Individual ProcessNodes
	A Scripting Mechanism
	A Flowcharting Interface

	An Example FloWr System
	Automation Experiments
	Flowchart Alteration
	Optimising Flowcharts
	Flowchart Construction

	Conclusions and Future Work
	Acknowledgments

