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Abstract

Systems which combine various forms of reasoning such as deductive inference and symbolic
manipulation have repeatedly been shown to be more effective than stand-alone systems. In general,
however, the combined systems are ad-hoc and designed for a single task. We present a generic
framework for combining reasoning processes which is based on the theory of the Global Workspace
Architecture. Within this blackboard-style framework, processes attached to a workspace propose
information to be broadcast, along with a rating of the importance of the information, and only the
most important is broadcast to all the processes, which react accordingly. To begin to demonstrate
the value of the framework, we show that the tasks undertaken by previous ad-hoc systems can be
performed by a configuration of the framework. To this end, we describe configurations for theorem
discovery and conjecture making respectively, which produce comparable results to the previous
ICARUS and HOMER systems. We further describe a novel application where we use a configuration
of the framework to identify potentially interesting specialisations of finite algebras.
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1 Introduction

Stand-alone Artificial Intelligence systems for performing specific types of reasoning – such as deduc-
tion in theorem provers, symbolic manipulation in computer algebra systems or induction in machine
learning systems – have steadily become more powerful. It is therefore no surprise that researchers
have investigated how one might fruitfully combine such reasoning systems so that the whole is more
than a sum of the parts. In general, such combinations have been ad-hoc in nature and designed with
a specific task in mind. For the field of combining reasoning system to progress, we believe it is im-
perative for more generic frameworks to be developed and experimented with. As described below,
the cognitive science theory of a Global Workspace Architecture has been proposed as a model which
captures the massively-parallel reasoning capabilities of mammalian brains. It could therefore provide
a basis for a generic computational framework within which reasoning systems can be combined. We
describe here such a generic framework and its implementation. We demonstrate two applications of
it, namely to theorem discovery and conjecture making in domains of pure mathematics, which have
been performed previously by bespoke combined systems. We also give details of a new application to
finite algebra, where we use a configuration of the framework to automatically identify specialisations of
algebra classes which could be fruitful areas for mathematical investigation.

As described in §2, our framework allows for multiple processes to reason about information in
disparate ways and communicate via a blackboard-style global workspace. In each round of a session,
a single piece of information is broadcast to each process attached to the workspace. Each process may
or may not reason about the broadcast information in order to produce novel information. For instance,
if a conjecture is broadcast, a deductive process may try to prove the conjecture, whereas a model-
generation process may seek a counterexample. Any process which does produce novel information will
propose it for broadcast, along with a numerical rating of its value, which the process itself determines.
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The framework then broadcasts only the highest rated proposal at the start of the next round, and the
session progresses. Developers of combined reasoning systems can configure the framework to perform
particular tasks by specifying how certain processes will reason about certain types of information; what
novel information they will output; and how proposals should be ranked.

Automated theory formation, as performed by the HR system [6], has been at the heart of a number
of ad-hoc combined reasoning systems. In particular, the TM system [9] used HR, the Otter theorem
prover [19] and the MACE model generator [20] to discover and prove alternative true theorems to a
given false conjecture. In the ICARUS system [5], HR was used in combination with Otter and the
CLPFD constraint solver inside Sicstus Prolog [4] to reformulate constraint satisfaction problems. In the
HOMER system [7], HR was used in conjunction with Otter and the Maple computer algebra package
[24] in order to make conjectures about computer algebra functions. Also, HR is part of the system
developed by Sorge et al. [8] which integrates computer algebra routines, theorem proving, SAT-solving
and machine learning, and has been used to discover and prove novel classification theorems in algebraic
domains of pure mathematics. As an initial test of our implemented framework, it seemed sensible to
see whether it could be configured to perform similar tasks to those performed by some of these ad-hoc
systems.

As described in §3 and §4 respectively, we have managed to configure the framework to perform au-
tomated theorem discovery in quasigroup theory (as previously undertaken by HR as part of the ICARUS
system) and to perform automated conjecture making in number theory (as previously undertaken by the
HOMER system). For each configuration, we describe the processes, the types of information which are
broadcast, and how this information is rated. We also provide qualitative and quantitative comparisons
with ICARUS and HOMER respectively. In §5, we describe a new application for combined reason-
ing systems in the domain of finite algebra. In this application, we seek to identify specialisations of
finite algebras which are simple in definition yet have mathematical properties to suggest they may be
interesting areas for mathematical investigation in their own right. The configuration we developed for
this task is a modified version of the one we used in §3 for automated theorem discovery in quasigroup
theory. We applied this to three different classes of finite algebra and, in each case, the system identified
an interesting specialisation.

A Global Workspace Architecture is essentially a model of combined serial and parallel information
flow, wherein specialist sub-processes compete and co-operate for access to a global workspace [1]. A
specialist sub-process can perform any cognitive process such as perception, planning, problem solving,
etc. If allowed access to the global workspace, the information generated by such a specialist is broadcast
to the entire set of specialists, thereby updating their knowledge of the current situation. In recent years,
a substantial body of evidence has been gathered to support the hypothesis that the mammalian brain is
organised via such global workspaces [2]. Moreover, this theory can be used to explain aspects of human
cognition such as conscious and unconscious information processing, and can be applied to challenges
such as the frame problem [23]. From an engineering point of view, the global workspace architecture has
aspects in common with Newell’s blackboard architectures for problem solving [21]. AI software agents
based on the Global Workspace Architecture have been successfully implemented [15, 16], and in some
cases applied to problem solving, e.g., constraint solving [17]. Another framework which combines
disparate reasoning systems is the OANTS [3] architecture of Benzmüller et al. That framework has
much overlap with the GWA, as proactive software agents which determine they are relevant to a central
proof object are allocated resources to investigate, and they bid to amend the current state based upon
their findings. Also, in [12], Fisher describes a concurrent approach to theorem proving using broadcasts,
where agents each hold a subset of clauses to a given proof task. In that approach, agents respond to
clausal broadcasts by updating their set of clauses and broadcasting any new information to all, or sub-
groups of, other processes. This has been adapted to problem-solving applications, such as negotiation
[13] and planning [14]. What distinguishes the GWA framework from other approaches is the simplicity
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of the architecture and the restrictions it places upon communication. Our framework effectively limits
processes to one broadcast message for each processing result and this message is not guaranteed to be
received by any other process. Such messages represent only a tiny fraction of the current state of the
overall system and so the workspace has a much reduced scope in comparison to the blackboard in a
traditional blackboard architecture. We are interested in addressing whether – despite these simplifying
restrictions – we are able to construct useful combined reasoning systems using this framework, or indeed
whether the framework actually simplifies the often difficult process of integrating disparate AI systems.

2 A Framework for Combining Reasoning Systems

The architecture defined by our framework is inspired by the Global Workspace Architecture [1]. Each
of the processes attached to the global workspace performs either some type of reasoning (e.g., by encap-
sulating a theorem prover or a computer algebra system) or a useful administrative task such as checking
for redundancy in outputs. The framework defines how processing takes place on a round-by-round basis.
In addition, it outlines rules which all attached processes must follow. A round starts with the broadcast
of some reasoning artefact (e.g., a conjecture, proof, example, etc.) which each attached process may
ignore or may react to in various ways. Specifically, a process may do one or more of the following:

• Construct a proposal for broadcast, consisting of a reasoning artefact and a numerical (heuristic)
value of importance that the process ascribes to that artefact.

• Detach itself from the framework.

• Attach new processes to the framework.

At the end of each round, various processes will have been added to and removed from the global
workspace, and a set of broadcast proposals will have been submitted to the framework. At the start
of the next round, the framework chooses the proposal with the highest importance value, and broadcasts
the reasoning artefact from that proposal. In the case where multiple proposals have equal heuristic value,
one is chosen from them randomly. All non-broadcast proposals are discarded and will not be considered
for broadcast later unless they are re-proposed. Currently, all reasoning artefacts are broadcast as string
arrays, examples of which are presented in the next two sections.

To create a combined system, a developer must create a configuration of the framework, by defining:

• The reasoning artefacts that may be broadcast on the workspace.

• The processes that may be attached to the workspace and their behaviour, which must conform
to the framework rules. In particular, how each process reacts to broadcasts, the processing or
reasoning they perform, the proposals they can make and the method they use in determining the
heuristic rating of importance.

• The starting state, i.e. the initially attached processes.

We have developed the GC toolkit, which enables developers to easily configure combinations of reason-
ing systems for particular tasks within the framework. GC, which takes its name from global-workspace
and combining, allows users to develop their configurations into full system implementations. It includes
the core code for the round-by-round processing and a number of pre-coded processes which encapsu-
late specific reasoning tasks. For example, the toolkit currently provides a process which appeals to the
Prover9 theorem prover [18] in attempts to prove broadcast conjectures. Users can choose and adapt
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processes from GC’s pre-coded selection for use in their configurations or they can develop their own
processes with the aid of libraries provided in the toolkit.

The GC toolkit is implemented in Java. Developers who wish to create new processes do so by
extending the toolkit’s WorkspaceProcess class. This class defines an abstract method react which the
developer must override with the behaviour they want for their process. The react method must im-
plement how the process behaves in response to different broadcasts and the processing that should be
performed. The react method should return whatever proposals the developer wishes the process to
make, and the developer must also define how the process should rate the importance of its proposals.
The developer can also define parameters for the process. For example, a process to read and broad-
cast the contents of a file benefits from a parameter to indicate the file path. If a developer wishes to
encapsulate an external reasoning system then the react method should be a wrapper for that system,
making appropriate external calls. The toolkit includes a graphical interface for creating configurations
of the framework. It allows users to drag and drop processes into configurations, set their parameters and
run the resulting configurations. The code that runs the workspace simply calls the react method for all
currently attached processes, collates their returned proposals and selects the highest rated.

Our framework is quite straightforward and we have only deviated from the underlying GWA theory
by allowing the termination and spawning of processes. We believe that maintaining this low complexity
has several benefits for clarity of design and extensibility, and we are investigating how capable this
simple framework can be. However, there are many areas of the framework where we see potential
for future development. For example, currently, all processing is performed on a single processor in a
serial fashion. Moreover, processing is synchronous, because all processes are given the chance to react
before a new round is begun, and it may be that parallel or asynchronous variants of the framework
could be more effective. Further, once started, the behaviour of the system will be determined by three
factors: the configuration chosen by the user, the values of parameters they have set and the randomness
in choosing between equal proposals in a given round. Currently, once processing has begun, the user
cannot intervene in any way other than to pause or stop the system. We have introduced control processes
and control broadcasts, in response to which some processes detach from the workspace. This allows us
to terminate some aspects of processing when a specific processing goal has been reached. However, we
have not yet considered any more sophisticated intervention schemes. As yet, we have only considered
relatively simple importance rating schemes. In general, processes will assign the same importance to
all broadcasts of the same type. We have enhanced this slightly in some applications where we enable
processes to determine the importance of their proposals based upon the specifics of their proposal. For
example, in §3.4, the importance rating is based partly upon the number of predicates and variables
included in a concept defintion. These, and other, aspects of the framework, where we see the potential
for future development are discussed in §6.

In the next sections, we present configurations of the framework to demonstrate its potential for
combining reasoning systems. In the first configuration, we develop the core automated theory formation
processes which achieves similar behaviour to the concept production rules, conjecture making routines
and third-party interactions which drive the HR system. These processes appeal to both the Yap Prolog
system [11] and Prover9. In the second configuration, we improve the theory formation processes, and
enable an interaction with the Maple computer algebra system [24]. In §5, we discuss a novel application
of the theory formation configuration to investigating interesting specialisation classes of finite algebras.

3 Configuration 1: Quasigroup Theorem Discovery

Constraint solving is a very successful area of Artificial Intelligence research, and constraint solvers
are regularly used for solving industrial-strength problems in, for example, scheduling or bin-packing.
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The way in which a constraint satisfaction problem (CSP) is specified is crucial to the success of the
solver, as different specifications can lead to radically quicker solving times. For this reason, there
has been much research into reformulating constraint satisfaction problems. Our contribution has been
to introduce a combined-reasoning system for finding additional constraints which are implied by the
CSP specification. With the ICARUS system [5], using the QG-quasigroup standard CSP benchmark
set, we showed that it was possible to substantially increase efficiency when solving CSP problems
by automatically discovering implied constraints. ICARUS is an ad-hoc system which employs the
HR program to make conjectures empirically about the solutions to a CSP, then Otter to show that the
conjectures are true, and finally uses the CLPFD constraint solver [4] in Sicstus Prolog to determine
which proved theorems increase the solver efficiency when added as implied constraints.

With the configuration described here, we intended to show that the framework could combine ma-
chine learning and theorem proving processes to discover implied constraints about QG-quasigroups
similar to those found by ICARUS. In future, we also plan to attach constraint solving processes, so
that the framework will be able to determine – like ICARUS – which implied constraints reduce solv-
ing time. As described in §3.1 to §3.4 below, to configure the framework for this task, we specified
five different types of broadcastable artefacts, some concept forming, conjecture making and explanation
finding processes and a fairly straightforward scheme for ascribing importance values to bids for artefacts
to be broadcast. In §3.5, we show that the configured framework does indeed produce similar results to
ICARUS.

In overview, the configured framework was required to invent new concepts (initially built from a
set of user-supplied background concepts), by manipulating and combining existing concept definitions.
Concept defintions are first order logic statements in a Prolog-readable format. Each concept definition
partitions the example set into two; those for which the definition holds and those for which it does not.
By comparing the sets of examples for which definitions hold, the system makes empirical conjectures
which relate the concepts. Some of these conjectures can be proven to follow from the axioms of the do-
main of investigation. In simple outline, the system starts with Definition broadcasts for the background
concept definitions. The DefinitionReviewer acts as a filter, so that only unique Definitions become Con-
cepts. The ExampleFinder process finds examples for Concepts and the EquivalenceReviewer process
filters out those Concepts that are equivalent to previous Concepts. When a Concept has passed this filter,
a NewConcept is broadcast. DefinitionCreator processes react to NewConcept broadcasts by manipulat-
ing their definitions to create new Definitions. NewConcept broadcasts also feed into conjecture making.
In particular, ImplicationMaker processes compare the example sets of NewConcepts and propose Con-
jectures, which may be proved by the Prover process, creating an Explanation proposal. Full details of
broadcastable artefacts and the processes are given below.

3.1 Broadcast Artefacts

To represent the concepts, conjectures and proofs, we specified five main types of broadcast artefacts,
below. As noted in §2, broadcasts take the form of string arrays, and we use the notation [e0 : e1 : . . . : en]
to represent such an array of strings. In general, the first element of a broadcast string array indicates the
type of broadcast. The remaining elements are the specifics of that broadcast.

1. Definition, in the form [def:D], where D is a Prolog-readable definition of a concept.

2. Concept, in the form [conc:D:E], with D as above and E being a list of examples which satisfy that
concept definition.

3. NewConcept, in the form [new:D:E], with D and E as above. The distinction between Concept and
NewConcept facilitates equivalence reviewing as described below.

4. Conjecture, in the form [conj:D1:D2:K], where D1 and D2 are concept definitions and K is a keyword
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indicating the type of conjecture. In this configuration, K is limited to being either im, which denotes
that D1 is conjectured to imply D2; or eq, denoting D1 is conjectured to be equivalent to D2.

5. Explanation, in the form [exp:D1:D2:K:R:P], where D1, D2 and K represent a conjecture, as above. R
is a keyword indicating the type of explanation; either true, which indicates that the conjecture has been
proved, for example by a prover process; or false, where the conjecture has been refuted, for instance a
model generator has found a counter-example. P gives details of the proof or refutation, as appropriate.

An example Definition from quasigroup theory is [def:m(Q,A,A,B),m(Q,B,B,A)], which describes ele-
ments of quasigroups satisfying the equation A∗A = B∧B∗B = A. The m/4 predicate defines the mul-
tiplication table for a quasigroup; e.g. m(Q0,0,1,2) states that 0∗1 = 2 for quasigroup instance Q0. The
NewConcept artefact would be [new:m(Q,A,A,B),m(Q,B,B,A):((Q0,0,1),(Q0,1,0),(Q1,2,1),. . . )], with an
associated example set. These are tuples of valid bindings for the definition variables; {Q0,Q1} are
identifiers for different quasigroups and {0,1,2} are the elements of those quasigroups. The conjecture
∀AB(A∗B = B∗A↔ A = B) would be represented as [conj:m(Q,A,B, C),m(Q,B,A, C):e(Q,A,B):eq], in
a Conjecture artefact where the e/3 predicate, e(Q,A,B) is the equality of two elements within a particular
algebra instance (A = B in quasigroup Q). A proof of this conjecture in an Explanation artefact would
be as follows; [exp:m(Q,A,B, C),m(Q,B,A, C):e(Q,A,B):eq:true:proof text].

We make use of flags attached to broadcast artefacts to control the workspace. In particular, Def-
inition and Concept artefacts have an attached complexity flag indicating the number of definitions,
including itself, that have been used in creating that definition. This allows us to place an upper limit
upon processing. For example, the definition m(Q,A,A,B),m(Q,B,B,A) would have a complexity of 3; in
addition to itself, this definition has used the background definition of multiplication m(Q,A,B,C), and
the concept of squaring an element m(Q,A,A,B). For clarity, we have omitted these flags from the formal
definitions of the broadcasts, above.

3.2 Processes

We developed the following types of processes for use in the Quasigroup Theorem Discovery configura-
tion:

1. DefinitionCreator processes propose new Definitions. They each encapsulate a different concept
formation method, akin to production rules in HR. They react to NewConcept broadcasts, [new:D:E].
Some formation methods involve modifying a single concept definition, where they attempt to create a
new definition from D. Others combine two definitions, in which case they remember D, by spawning
a clone process that reacts to NewConcept broadcasts, [new:D’:E’:C’], by attempting to combine D and
D’.

2. DefinitionReviewer, reacts to Definition broadcasts, [def:D], and removes redundancy by checking
whether D has been seen before. If not, it proposes for broadcast [conc:D: /0], i.e. a concept with definition
D and an empty example set.

3. ExampleFinder, encapsulates a Prolog database containing examples for the initial background con-
cepts. All concept definitions are Prolog terms and ExampleFinder can generate example sets for new
concepts by querying Prolog with the definition. ExampleFinder reacts to Concept broadcasts with empty
example sets, [conc:D: /0], by generating an example set E. If E is non-empty, it proposes [conc:D:E].

4. EquivalenceReviewer, checks each new concept to identify and filter out those having the same ex-
ample set as a previously developed concept. This removes a great deal of duplicated effort as the further
development of each concept would give equivalent results. The process reacts to Concept broadcasts
[conc:D:E] by proposing for broadcast [new:D:E]. Also, the process reacts to broadcast [new:D1:E1] by
spawning a clone process P. For any future Concept broadcast [conc:D2:E2], if P finds that E2 = E1, it
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proposes an equivalence conjecture between them: [conj:D1:D2:eq]. A higher iportance value is allo-
cated to equivalence conjecture proposals than to concept proposals. In the case where E2 = E1, both
[conj:D1:D2:eq] and [new:D2:E2] will be proposed and the conjecture will be broadcast as it has higher
importance. [new:D2:E2] will only be broadcast in the case where no spawned process identifies equiva-
lence.

5. ImplicationMaker, compares the example sets of two NewConcept broadcasts. It reacts to the first
NewConcept, [new:D1:E1], (where E1 6= /0), by spawning a clone process, P, which itself reacts to future
NewConcept broadcasts [new:D2:E2]. In particular, if P finds that E1 ⊂ E2, it proposes [conj:D1:D2:im]
(or [conj:D2:D1:im] if E2 ⊂ E1).

6. Prover processes encapsulate the Prover9 theorem prover with axioms for the domain under inves-
tigation. It attempts to prove conjectures in any Conjecture broadcast, [conj:D1:D2:K], and proposes
[exp:D1:D2:K:true:P], whenever a proof, P, is found.

The definition methods embodied by the DefinitionCreator processes are either unary or binary.
Unary methods act upon one definition. An example of a unary method is called variable freeing. Given
the starting concept m(Q,A,A,B), i.e., the arity 3 concept of pairs of elements for which A ∗A = B,
freeing the variable A would result in the concept m(Q, A, A,B), which is the arity 2 concept of ele-
ments B, which are the square of some element. In addition, there are unary concept forming processes
which unify variables, for example creating m(Q,A,A,A) from m(A,B,C,D). Other methods include
grounding, which involves variable instantiation, and methods combining definitions as conjunctions
with themselves with different variable orderings. The most common binary methods involve either
creating a conjunction of two previous definitions and unifying their variables in a particular manner,
or creating a conjunction of a previous concept and the negation of another previous concept. These
methods are inspired by HR’s concept formation methods, as described in [6].

DefinitionCreator processes spawn other processes to repeat-propose the definitions they create. This
means that the definition is not forgotten if it is not immediately broadcast. Several other process types,
for example the ImplicationMaker and Prover also use such an approach. This repetition addresses the
question of residual memory, which is not really tackled by GWA theory.

3.3 Initial State

At the start of a session, a number of processes are attached to the global workspace. Several Definition-
Creator processes are attached as they each embody a different definition creation method and allow us
to develop a theory in different ways. We attach DefinitionCreator processes for each of the definition
formation methods described above. In addition, we include several parameterisations of each method,
whereby the same formation method operates upon different sub-sets of variables. In addition to the
DefinitionCreator processes, we attach one instance of each of the other processes defined above. We
also specified a process which proposes BackgroundConcept and BackgroundAxiom artefacts for the
domain, which starts the theory formation session.

3.4 Importance Rating Scheme

The framework requires that each proposal is given a numerical rating and it chooses the highest for
broadcast. However, for the experiments described below, we used a simple scheme; Definitions are
scored at 100, Concepts with no examples at 200, Concepts with examples at 250. Any NewConcept
broadcasts are given the value 300 and Conjectures 400 meaning, in particular, equivalence Conjectures
will get precedence over NewConcepts. Explanations are valued at 500. Having Explanations ranked
the most highly ensures that any proved theorems are broadcast immediately, which seemed sensible
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given the purpose of the application – to discover proved theorems about quasigroups. In addition,
we also experimented with using the complexity measure to further rank Definitions, whereby the base
importance of 100 is reduced by the definition’s complexity. This means that simpler definitions are
more likely to win the competition for broadcast. Not surprisingly, we have found that this produces
simpler theories in step-limited sessions. There are many different rating schemes we could experiment
with, and we plan to do so.

3.5 Illustrative Results

As mentioned previously, we want to compare the configured framework against the ICARUS system,
as described in [5], where the application domain was QG-quasigroups, which are Latin squares with
additional axioms, e.g., QG3-quasigroups have the additional axiom that ∀a,b((a ∗ b) ∗ (b ∗ a) = a).
In its investigation into QG3 quasigroups, as reported in [5], ICARUS discovered three theorems which
were turned into efficiency-gaining implied constraints: (i) ∀ab(a∗a = b ↔ b∗b = a) (ii) ∀ab((a∗b =
b ∗ a)→ a = b) (iii) ∀ab((a ∗ a = b ∗ b)→ a = b). Using the configuration described above, in a run
of 777 broadcast rounds, lasting 61.3 seconds on a 3.2GHz Intel Pentium IV with 1GB of RAM, our
configuration generated 24 Concept broadcasts, after equivalence checking, and created and proved 159
conjectures, including the three above found by ICARUS. These results mean that if our configuration
were used to replace the HR system in the ICARUS system, then we would certainly achieve the same
results. We have similarly ran the configured framework with QG4 and QG5 quasigroups, and found that
it also produced comparable results to ICARUS, although we omit details here.

As an illustrative example, we will describe how our system discovered and proved result (i) above.
The background concepts we supplied were the multiplication operator m(Q,A,B,C) which states that
A*B=C for A,B,C ∈ Q; and equality e(Q,A,A) :- m(Q,A, , ), which states that all elements of Q are equal
to themselves. The workspace was configured according to the initial state described above. Examples
for the background concepts were given to the ExampleFinder and axioms for QG3 quasigroups to the
Prover process. For clarity, by propose below, we mean that a process made and repeatedly proposed a
proposal for broadcast. We also omit complexity information.

In a fairly early processing round, a Definition artefact for m(Q,A,B,C) was broadcast. DefinitionRe-
viewer reacted to this definition and confirmed that it was novel, thus proposing it in a Concept artefact
with no examples. In the next round, this was broadcast, and ExampleFinder reacted by obtaining ex-
amples of the concept from its Prolog database and proposing a Concept with these examples. Equiv-
alenceReviewer reacted to the broadcast by proposing a NewConcept with that definition and this was
subsequently broadcast as the concept was not equivalent to any previous concept. EquivalenceReviewer
reacted again to this broadcast NewConcept by spawning a clone process to review future Concepts for
equivalence with m(Q,A,B,C). In that same round, the broadcast also triggered the DefinitionCreator
process encapsulating the Unify-[0,1,1,2] method. The process unified the second and third variables
of this definition to generate, and propose, a new Definition, [def:m(Q,A,A,B)]. In a similar process to
the above, this became a NewConcept and an EquivalenceReviewer process was spawned to compare
it to future concepts. The DefinitionCreator process with the conjoin-[[0,0],[1,2],[2,1]] method then
proposed [def:m(Q,A,A,B), m(Q,B,B,A)]. In later rounds, this was elevated to a Concept and examples
were found for it. At this stage, the EquivalenceReviewer process spawned earlier identified that the
example set for this concept was identical to that of m(Q,A,A,B) and proposed the equivalence conjecture
[conj:m(Q,A,A,B):m(Q,A,A,B),m(Q,B,B,A):eq]. This was broadcast in the next round and the Prover
process reacted by proving the conjecture, using the axioms it was supplied with. The ranking scheme
favours explanation artefacts above all others so the proof of this was broadcast. The proven theorem
states ∀ab(a∗a = b↔ a∗a = b∧b∗b = a) which is logically equivalent to that above.

The configuration described above was our second major attempt at getting the framework to achieve
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results comparable to ICARUS. Our first attempt generated many repeat broadcasts and therefore per-
formed much unnecessary processing. The main reason for this was that the same concept was formed
in a number of different ways. Also, there were instances where a chain of definition creation methods
applied to a definition resulted in that same definition, creating many repetitive loops. This redundancy
meant that the first system took 25,000 rounds (during an hour of running time) to produce the three
interesting theorems above, found amongst 15,000 other conjectures. In response, we added the Defini-
tionReviewer process to stop the repetition. Later, we designed the EquivalenceReviewer and made the
distinction between Concept and NewConcept, to remove equivalent concepts. The results from the final
version of this configuration represent a vast improvement upon those early results.

4 Configuration 2: Number Theory Conjecture Making

One of the purposes of using computer algebra packages is to gain a better understanding of certain
mathematical functions, and the calculation of outputs for inputs can often lead to the formation of
conjectures about the function. With the HOMER system, we combined the HR machine learning system
with the Maple computer algebra package so that HR could automatically discover conjectures about
some user-supplied Maple functions. In [7], we applied this approach to number theory, using some
functions which included a Boolean primality test, and τ(n) and σ(n) which calculate the number and
sum of divisors of n respectively. We found that, due to the inherent connectivity between concepts in
number theory, the main problem was the production of too many conjectures which followed from the
definitions. Hence, we enabled HOMER to use the Otter theorem prover as a filter, i.e., any conjectures
proved by Otter were discarded, as they were highly likely to follow trivially from the concept definitions.

To produce equivalent results to HOMER, using the GC framework, we built a second configuration
on top of the one described above. We used the same importance rating scheme as before, but we changed
the artefacts slightly and the processes slightly more. In overview, the new configuration effectively
passes conjectures through a series of filters which halt the progress of the conjecture if it fails a test
indicating that it will be uninteresting. In addition to filtering, we also wanted to mimic the way in
which HOMER splits conjectures into smaller ones, e.g., an equivalence is split into two implication
conjectures. To achieve the filtering and splitting through the normal workspace-process mechanism,
we changed the Conjecture reasoning artefact to be of the form [conj:D1:D2:K:L]. Here, L is a number
in {0,1,2,3} which indicates the level of conjecture filter through which the conjecture has passed. The
levels are as follows: (0) indicates that the conjecture has not been split or filtered, (1) indicates that
the conjecture has been split into implicates (2) indicates that the conjecture cannot be proven trivially
from details of the background examples and function definitions (3) indicates that the conjecture still
cannot be proven after considering some of the other conjectures the user has chosen as axioms – this
rules out conjectures which are specialisations of some interesting conjectures identified by the user. All
conjectures initially proposed by the processes spawned by EquivalenceReviewer and ImplicationMaker
are assigned level 0.

When configuring the concept forming processes, we took into account the infinite nature of the
number line. That is, in order to make empirically correct conjectures which relate concepts, the example
generation must be sound, i.e., the generation of examples for two logically equivalent concepts should
always result in the same finite example set. For efficiency purposes, we restricted our consideration to
working just with the numbers 1 to 50, but this introduces some problems. For example, σ(28) = 56,
so, with no further information, the result of τ(σ(28)) cannot be calculated. We resolved this problem
by storing background function values to cover a much larger range of integers whilst restricting the
generation of examples to 1 to 50. We introduced the notion of a generator variable, which is one
from which all other variables in a definition can be generated, by being the output from a function to
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which the inputs are known or can themselves be generated. All background concepts are supplied with
relevant function input and output information, and the concept forming production rules use this to
avoid inventing ambiguous definitions.

In addition to upgrading the concept forming processes, we made a few changes to some other exist-
ing processes. In particular, using the notion of generator variables, DefinitionReviewer was improved to
also check definitions for empirical testability. In this configuration, it rejects those definitions for which
example sets cannot be soundly generated. Also, we have enabled the ExampleFinder process to use the
Maple computer algebra system to calculate examples for background concepts which represent num-
ber theory functions. Moreover, the ImplicationMaker process can now be given a minimum example
set size, and if a concept has fewer examples than this threshold, no conjectures will be made for that
concept. This stops the formation of conjectures such as τ(a) = 1↔ σ(a) = 1, as the concepts on both
the left and right hand side are only satisfied by the number 1. For this configuration, we implemented
two types of Prover process. The level 1 Prover reacts to level 1 conjectures using background examples
and function definitions in proof attempts. In contrast, the level 2 Prover reacts to level 2 conjectures
and attempts a proof using the same axioms together with axioms supplied by the user. In each case,
the prover proposes an Explanation artefact if they are successful and a Conjecture artefact of one level
higher if they fail.

We also added processes to split equivalence conjectures into two implications, and a method by
which conjectures concerning concepts with small example sets – which are likely to be uninteresting –
are avoided. In particular, we added these processes:

RightConjectureSplitter and LeftConjectureSplitter
The first of these processes reacts to level 0 Conjecture broadcasts (both im and eq) by proposing a level
1 im conjecture with the same definition list. LeftConjectureSplitter performs similarly, but reverses
the members of the definition list, and only in response to eq conjectures. This procedure increases the
overall number of conjectures but does lead to more pertinent conjectures, e.g., the non-obvious side of
an equivalence conjecture.

ConjectureApplicability
This reacts to a Concept with a small set of examples satisfying its definition. It proposes a conjecture
that the given examples are the only ones possible for that definition. For example, it would propose
[conj:sigma(A,1):e(A,1):eq] on seeing that 1 is the only number for which σ(A) = 1. These conjectures
prevent further development of these concepts in a similar manner to the EquivalenceReviewer.

4.1 Illustrative Results

As for the experiments with the HOMER system, we used the σ(n), τ(n) and isprime(n) background
functions together with the notion of equality. We ran the system to completion with a complexity limit
of 6. Under a similar experimental set up, as reported in [7], HOMER created 48 concepts, whereas
our configuration created 97, of which 38 were found in HOMER’s corpus of 48. We identified four
reasons why the extra ten concepts were not created by our system. Firstly, three were not produced
due to timing differences in the equivalence checking. Equivalence checking works in similar ways in
each system, i.e., any new concepts with the same example set as a previous one are discarded and an
equivalence conjecture is raised. Hence, the time at which equivalent concepts are proposed determines
which is discarded and which is kept. For example, both systems found the following equivalence:
∀aσ(a) = 1↔ τ(a) = 1. However, our configuration chose to explore the τ(a) = 1 branch, discarding
σ(a) = 1, whereas HOMER did the opposite.

Secondly, variable ordering accounted for some of the difference in the results. Our system consid-
ered τ(a) = b∧σ(b) = a∧ τ(b) = b to be equivalent to σ(a) = b∧ τ(a) = a. Depending on how the
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variables are ordered, the example sets of each can be written [[1,1],[2,3]] or [[1,1],[3,2]]. This ordering
difference led to HOMER treating this concept as new whereas our system discarded it (which high-
lights a deficiency in the underlying HR system). Thirdly, one concept produced by HOMER, namely
τ(a) = 2∧ isprime(2)∧σ(2) = a, would not be considered valid by the DefinitionReviewer in our sys-
tem. In this formula, a is always the result of σ(2), i.e., 3. So, this formula is essentially variable free, and
hence not really a concept definition (which again highlights a deficiency in HR). Finally, two concepts
were not produced by our configuration due to differences in its calculation of complexity – HOMER
counts re-used concepts only once towards the complexity, whereas our system counts them with mul-
tiplicity. Hence, our system counted certain concepts as complexity 7, whereas HOMER counted them
as complexity 6. When the configuration is run with a complexity limit of 7 then these concepts are
produced.

On the other hand, our system produced a number of concepts that were not produced by HOMER.
Some of these were ignored by HOMER for good reason, e.g., our system produced several concepts in
the form σ(a) = b∧ (∃c(σ(b) = c))). Here, c indicates the existence of a functional result for sigma(b).
Such formulae are uninteresting extensions to earlier concepts. However, other concepts produced by our
system and not HOMER were valid and potentially interesting. It is difficult to determine why HOMER
missed these concepts, and we are still investigating this. Looking instead at the conjectures made
by the two systems, we note that our configuration created 669 level 1 conjectures, i.e., after splitting
valid equivalence conjectures into implicates. The first filter – which excluded conjectures if they were
provable from the background definitions – removed 331 conjectures, leaving 338. By comparison, the
HOMER system created 137 conjectures, of which Otter proved 43, using the same methods, leaving
94. The main reason for the difference in these numbers is the relative number of concepts that the two
systems produced, which naturally meant that the configured framework produced more conjectures.

In a similar manner to that adopted for HOMER, we reviewed the 338 remaining conjectures. In
particular, we looked at the first 10 conjectures and added the following as axioms (after re-combining
some of the split implications):

∀ a (σ(a) = 1→ a = 1) ∀ a (σ(a) = a↔ σ(a) = 1)
∀ a (τ(a) = 1→ a = 1) ∀ a (τ(a) = a→ (a = 1|a = 2))
∀ a (τ(a) = 2↔ isprime(a))

After running the process again, our configuration filtered out all but 66 conjectures (a reduction of
around 90%). A similar kind of reduction was achieved by the users of HOMER, hence we can claim
that our configured generic framework is capable of producing comparable results to the bespoke, ad-hoc
HOMER system. Importantly, the most interesting (proved by hand) result from the HOMER experi-
ments was: isprime(σ(a))→ isprime(τ(a)), which our system re-discovered.

5 Investigating Specialisations of Finite Algebras

In addition to showing that our Global Workspace approach can be used to re-implement existing com-
binations of reasoning systems, we can also use the system for novel applications, one of which we
describe here. In finite algebra, it is common for a specialisation of an algebra to be studied in its own
right, for instance, Cyclic groups, Abelian quasigroups [22], and so on. As there are thousands of possi-
ble specialisations, it is an interesting question to try to predict which one it would be fruitful to study.1

It is naturally very difficult to predict in advance whether a domain will be worthy of study, so we restrict
ourselves to an automated reasoning setting. In particular, we say that a specialisation of an algebra is

1Note that Toby Walsh originally suggested that we perform a similar analysis, using the HR theory formation system, but this
project wasn’t undertaken.
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more interesting than another if a theory formed about the former specialisation contains theorems which
on average are more difficult to prove by an automated prover than the latter.

The GC configuration for this application was similar to that used for quasigroup theorem discovery
above, with a small number of amendments. Firstly, we introduced a MaceAxiomPopulator process,
which uses the Mace model generator to produce background concepts and examples for the domain.
The process reacts to the broadcast of a BackgroundAxiom by generating models for that axiom up to a
user defined algebra size limit. It extracts the algebra operators from the models and generates example
sets for them by interpreting the models. It then proposes these operators and examples sets together as a
BackgroundConcept artefact, which initiates theory formation as before. This new process allows us to
perform theory formation with only the axioms of the domain as a starting point. This greatly improves
efficiency as, previously, a user was required to generate examples independently and convert them into
an appropriate format. Our next amendment was to configure the system with two Prover processes; one
of which uses the axioms of the domain in attempts to prove conjectures and another which holds no
axioms. If this second prover can prove a conjecture then we know it is trivially true. This allows us
to distinguish, potentially, more interesting conjectures. If the trivial prover can prove a conjecture then
we know that the Prover with the domain axioms will also be able to prove it. Consequently, we weight
the importance rating scheme toward the trivial proofs to ensure they are broadcast. We also introduced
a MaceRefuter process which appeals to Mace to find counter-examples to broadcasts conjectures. This
refutation process has access to higher orders of algebra and so can sometimes refute conjectures that
have been generated by being empirically true for smaller orders.

Starting with a fairly unstructured algebraic domain such as quasigroup theory, we used the system to
generate 100 concepts which can be interpreted as specialisations, expressed in a Prolog style in terms of
the multiplication operator only. Then, for each specialisation, we started GC with the original axioms of
the algebraic domain, with the specialisation definition also added as an axiom. We then ran the system
until it generated and proved 100 implication theorems, and recorded the average length of the proof
produced by the Prover9 prover. In Table 1, we present the top ranked specialisations from three domains:
semigroups, quasigroups and star algebras (which have the single axiom: ∀x,y,z((x∗ y)∗ z = y∗ (z∗ x)),
see [10]). We also performed a correlation analysis over the specialisations. In particular, for each
specialisation, we calculated a crude measure of the complexity of its definition by adding the number of
existential variables to the number of multiplication predicates present (note that this value is presented
in the comp. column of Table 1. We correlated this with the rank of the specialisation in Table 1, using
the R2 goodness-of-fit measure. A high level of correlation would indicate that it is possible to predict
to some extent which algebra specialisations are going to be interesting, without having to perform
an in-depth theory for each specialisation. We found a positive correlation of 0.25, 0.03 and 0.15 in
the quasigroup, semigroup and star algebra domains respectively. While the lack of correlation with
semigroups is surprising, it was not surprising that for the other two algebras, more complex definitions
produce more complex (in terms of average proof length) theories.

Bearing in mind that the balance of syntactic simplicity and semantic complexity is often regarded as
a maxim in pure mathematics – for instance, consider Fermat’s Last Theorem, which is very easily stated,
but very difficult to prove – we looked for a specialisation of each algebra which had a high rank, yet a low
complexity for its definition. In each case, we found suitable candidates. In particular, for semigroups,
the specialisation (m(A, B, C, B)),\+(m(A, C, D, B)) has a definitional complexity of only 5 (it has
three free variables, namely B, C and D, and two occurrences of the multiplication operator), but it is
ranked 92nd out of the 100 specialisations, as it produces a theory with a proof length of 6.54 on average
(with the best achieved being 7.76). The definition describes the notion of semigroups for which an
element is the right identity of an element that does not appear on its row of the multiplication table. For
quasigroups, the specialisations ranked 94th and 100th each have short definitions with a complexity of 7.
The 100th ranked is ((m(A, B, C, C),m(A, D, D, D)),\+(m(A, E, E, B))), which alludes to the notion
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Semigroups
rank apl comp. definition
91 6.50 7 ((m(A, B, C, B)),\+(((m(A, B, D, B)),\+(m(A, D, E, D)))))
92 6.54 5 ((m(A, B, C, B)),\+(m(A, C, D, B)))
93 6.54 10 ((m(A, B, C, D)),\+(((m(A, C, E, C)),\+(((m(A, C, F, C)),\+(m(A, F, G, C)))))))
94 6.59 9 ((m(A, B, C, D)),\+(((m(A, E, F, E)),\+(m(A, G, G, F)))))
95 6.63 9 ((m(A, B, C, D)),\+(((m(A, E, D, F)),\+(m(A, G, G, E)))))
96 6.64 8 ((m(A, B, C, D)),\+(((m(A, D, E, D)),\+(m(A, E, F, E)))))
97 6.67 10 ((m(A, B, C, D)),\+(((m(A, E, E, C)),\+(((m(A, C, F, C)),\+(m(A, F, G, C)))))))
98 6.68 10 ((m(A, B, C, D)),\+(((m(A, E, F, G)),\+(m(A, H, F, H)))))
99 6.80 11 ((m(A, B, C, D)),\+(((m(A, E, E, F)),\+(((m(A, F, G, F)),\+(m(A, G, H, F)))))))
100 7.76 8 ((m(A, B, C, B)),\+(m(A, D, D, C))),m(A, E, F, C)

Quasigroups
rank apl comp. definition
91 6.65 10 ((m(A, B, C, D)),\+(((m(A, E, F, F)),\+(((m(A, E, G, E)),\+(m(A, G, E, E)))))))
92 6.81 10 ((m(A, B, C, D)),\+(((m(A, E, E, E)),\+(((m(A, F, G, F)),\+(m(A, G, G, E)))))))
93 6.93 9 ((m(A, B, C, C)),\+(m(A, D, D, B))),m(A, E, E, E),m(A, F, B, F)
94 6.98 7 ((m(A, B, B, B),m(A, C, D, C)),\+(m(A, E, E, D)))
95 7.12 9 (((m(A, B, C, B)),\+(m(A, C, D, D))),\+(m(A, E, E, C))),m(A, F, F, F)
96 7.85 8 (((m(A, B, C, B)),\+(m(A, D, D, C))),\+(((m(A, E, C, E)),\+(m(A, C, E, E)))))
97 8.05 9 (((m(A, B, C, C)),\+(m(A, D, D, B))),\+(((m(A, E, E, E)),\+(m(A, F, F, B)))))
98 8.21 9 ((m(A, B, C, B)),\+(((m(A, C, D, D)),\+(((m(A, E, C, E)),\+(m(A, F, F, C)))))))
99 8.67 7 (((m(A, B, C, B)),\+(m(A, C, D, D))),\+(m(A, E, E, C)))
100 9.61 7 ((m(A, B, C, C),m(A, D, D, D)),\+(m(A, E, E, B)))

Star algebras
rank apl comp. definition
91 6.40 10 (((m(A, B, C, D)),\+(m(A, C, E, C))),\+(((m(A, F, F, F)),\+(m(A, C, G, F)))))
92 6.42 11 ((m(A, B, C, D)),\+(((m(A, E, F, G)),\+(((m(A, G, H, G)),\+(m(A, G, G, H)))))))
93 6.42 12 ((m(A, B, C, D)),\+(((m(A, E, F, G)),\+(((m(A, H, I, F)),\+(m(A, I, F, F)))))))
94 6.51 9 ((m(A, B, C, D)),\+(((m(A, E, E, D)),\+(((m(A, F, D, F)),\+(m(A, F, F, D)))))))
95 6.51 10 ((m(A, B, C, D)),\+(((m(A, E, C, E)),\+(((m(A, F, F, F)),\+(m(A, C, G, F)))))))
96 6.60 9 ((m(A, B, C, D)),\+(((m(A, E, F, G)),\+(m(A, F, G, G)))))
97 6.73 8 ((m(A, B, C, D)),\+(((m(A, E, F, E)),\+(m(A, E, E, F)))))
98 7.10 10 ((m(A, B, C, D)),\+(m(A, E, E, C))),((m(A, F, C, C)),\+(m(A, G, G, F)))
99 7.46 9 ((m(A, B, C, D)),\+(m(A, E, E, D))),m(A, D, D, F),m(A, F, D, F)
100 8.55 8 ((m(A, B, C, B),m(A, D, E, C)),\+(m(A, F, F, C)))

Table 1: Highest ranked specialisations for quasigroups, semigroups and star algebras. apl is the average
proof length, comp. is the sum of the variable and predicate counts.

of quasigrioups having at least one idempotent element , and an element which is the left identity of some
element but does not appear on the central diagonal of the multiplication table ,i.e. it is not the square
of some other element. This specialisation produced the theory with the highest average proof length of
9.61. Interestingly, the specialisation ranked 94th is very similar to the 100th but describing an element
that is a right identity. For star algebras, the 97th ranked specialisation is interesting. It represents a
specialisation for which an implication should hold. Namely, for all elements x and y, if x ∗ y = x then
y∗ y = x. We further investigated this specialisation by drawing a graph to indicate how it relates to the
other star algebra specialisations. In figure 1, the arrows all indicate an implication conjecture/theorem
that the algebras satisfying the definition of the first specialisation all satisfy the definition of the second
specialisation. Solid arrows are all true, i.e., can be proved from the background axioms. The arrows
with a dotted line are only empirically true, i.e., Prover9 could not prove the implications, and MACE
could not find counterexamples, even when we re-ran them for several minutes. These are therefore
interesting open conjectures and we will continue to investigate them.

6 Conclusions and Further Work

We have used the cognitive science theory of the Global Workspace Architecture (GWA) to devise and
implement a generic computational framework within which disparate reasoning systems can be fruit-
fully combined. We have shown how the framework can be configured in order to achieve similar results
to the ICARUS and HOMER combined reasoning systems which were implemented in an ad-hoc way
for specific purposes. We have also demonstrated a novel application of a configuration of our system
to investigating algebra specialisations. We applied this system to three classes of finite algebra and, in

13



Applications of a Global Workspace Framework to Mathematical Discovery Charnley, Colton

Figure 1: Graph showing the implication relationships between the specialisation of interest (circled)
and other specialisations of star algebras.

each case, it identified a syntactically simple, although semantically quite complex, specialisation of that
algebra that may be worthy of further mathematical investigation.

While the value of using disparate AI systems in combination has been repeatedly demonstrated, the
combined reasoning systems themselves are in general ad-hoc and purpose-specific. We believe that in
order for the field of combined reasoning to progress, there needs to be much more research into generic
frameworks within which different AI problem solving methods can be integrated. We hope that the
framework presented here will eventually become one of many that researchers can turn to when they
need to harness the power of more than one reasoning approach in combination.

While the functionality that the framework provides is fairly straightforward, we have shown that it is
possible to configure it to achieve behaviour which combines induction, deduction and calculation. Pro-
ducing similar results to those of previous ad-hoc systems has been the first milestone in the development
and testing of the framework. We intend to further demonstrate the potential of the system by adding
constraint solving processes, so that the full functionality of the ICARUS system can be achieved. We
will further add model generation, SAT-solving and planning processes so that results similar to those
from other combined reasoning systems – in particular the TM system [9] and the algebraic classification
system described in [8] – can be produced. We also want to show that using the framework can reduce
some of the development time in building combined reasoning systems, and we will do this by config-
uring the framework to apply to new problems by achieving novel reasoning combinations. In addition,
we will consider configurations of similarly skilled processes working as a portfolio.

While much of our effort to date has been spent on writing processes which achieve theory formation
like the HR system, it is important to note how differently the configured frameworks presented here
perform when compared to the very linear approach in HR. In particular, one of the potential benefits
of a framework based on the Global Workspace Architecture is the ability to distribute the reasoning it
performs over many processors. We plan to implement a distributed version of the framework, and to
determine the efficiency gains to be made.

Currently, our framework operates in a synchronous manner, where all processes are given time
to react before a new round is begun. Relaxing this requirement may yield efficiency gains as some
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processes react much faster than others. It may be possible, for instance, for the reasoning to proceed for
many rounds while a difficult theorem is proved on one processor. Furthermore, all processes are given
equal resources, and these could be adapted based upon perceived difficulty or importance of a particular
process’ task. We have only scratched the surface of the experimental possibilities that the framework
provides.

We chose quite straightforward importance rating schemes for the two configurations in order to
achieve similar results to HOMER and ICARUS. However, it is not clear that these are the best possible
schemes. In our experience with the HR system, it often pursues avenues of a theory which ultimately
lead to little of interest. It will be interesting for us to experiment with different setups of processes and
schemes to see which configurations of the framework are more fruitful, or which solve problems more
efficiently. We have only touched upon grading importance based upon the specifics of a proposal. We
could extend the sophistication of processes so that they consider other factors such as previous broad-
casts by other processes or by specialist control processes. This could also encompass such things as
information from the user or some external guiding system giving real-time feedback about the progress
of the system.

In addition to using the framework to advance the field of combining reasoning systems, we hope
to use it to shed light on the area of Global Workspace Architectures. We have already had to deviate
on two occasions from the standard theory of the GWA, in particular by allowing processes to terminate
themselves and to add new processes to the workspace. With a computational model of the GWA, we
hope to make the theory more concrete and more useful as a tool both for cognitive scientists and AI
researchers.
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Abstract

In previous work we have designed an automatic bootstrapping algorithm to classify finite al-
gebraic structures by generating properties that uniquely describe and discriminate different equiva-
lence classes. One of the drawbacks of the approach was that during the classification a large number
of different discriminating properties were generated. This made it particularly difficult to compare
classifying properties for different sizes of algebraic structures. To minimise the overall number of
properties needed we have now experimented with parameterising structures by counting the number
of elements with particular properties. Isomorphism classes are then discriminated by the different
number of elements with the same property. With this new approach we can now classify large num-
bers of algebraic structures using only a small number of properties. We were able to construct and
prove parameterisations for algebraic structures like loops of size 6 and groups of size 8. However,
the approach is currently limited as translating counting arguments into pure first order or proposi-
tional logic, often makes for prohibitively long problem formulations.

1 Introduction

In previous work, we have automated the construction of fully verified qualitative classification theo-
rems for finite algebraic structures of a given size, satisfying a given axiom set. For instance, given the
axioms of group theory and specification of size 6, our system would: invent the concepts of Abelian
and non-Abelian groups; prove that these concepts classify groups of size 6 into isomorphism classes;
and prove that no other isomorphism classes exist. We use a bootstrapping technique which involves the
combination of many automated reasoning systems, including theorem provers, model generators, SAT
solvers, machine learning and computer algebra systems. Without going into detail (see [3] for this), a
major part of the bootstrapping algorithm is to take two non-equivalent examples of the algebra and find
an invariant property that one has and the other doesn’t, which proves that they cannot be equivalent.
When such a property is found, a branching point on a classification tree is produced. The leaves of the
final tree represent concepts which define equivalence classes. Using this approach, we have been able to
construct the first qualitative classification theorems for loops and quasigroups up to both isomorphism
[3] and isotopism [6], e.g., for loops of size 6, which have 109 isomorphism classes and 22 isotopism
classes.

A quasigroup is generally a non-associative structure with a Latin square property. Loops have in
addition a unit element. Isotopism is an equivalence relation, which is a generalisation of isomorphism,
where two quasigroups (Q1,◦) and (Q2,?) are isotopic if and only if there exist three bijections α,β ,γ ,
such that α(x) ? β (y) = γ(x ◦ y) for all x,y ∈ Q1. The quantitative classifications for quasigroups and
loops up to size 10 with respect to isomorphism and isotopism, i.e., the number of different equivalence
classes, have been known for some time [7, 4]. Similar to establishing the quantitative results, qualitative
classification can realistically only be done automatically, considering the sheer number of structures
to consider. For instance, there are 1411 isomorphism classes for quasigroups of order 5 but already
1130531 different classes of size 6 quasigroups.

While this approach was successful, there are three main drawbacks to continuing in this way, namely
(i) the number of equivalence classes (both isomorphism and isotopism) explodes as the size of the
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algebra increases (e.g., there are more than 100 million loops of size 8 up to isomorphism), (ii) the
reasoning tools we use have difficulty with certain required theorems about algebras of size 8 or more,
and (iii) the classification trees produced for larger sizes bear little resemblance to those for smaller sizes
for a given axiomatisation. With respect to this final point, we have considered data-mining the trees
to find concepts which appear in multiple classification trees. However, it seems more sensible to first
experiment with more proactive approaches to generating classification results, by initially imposing a
tree structure which uses common concepts, before filling in the rest of the tree.

Drawing on existing mathematical results, we note that there are 14 groups of size 8 or smaller up
to isomorphism. Moreover, they are usually classified either in terms of a parameterisation consisting of
a family that they belong to and their size, e.g., the cyclic group of order 5 (C5), the dihedral group of
order 8 (D4), etc., or in terms of a cross product of such parameterised groups, e.g., C4×C4. While we
have performed some experiments with cross products, we concentrate here on the automatic generation
of parameterisations of finite algebraic structures. Our approach aims to look at parameterisations of
algebraic structures in terms of a list of set sizes, where each set contains elements of the structures with
particular properties. For instance, groups up to size 6 can be classified up to isomorphism by using a
parameterisation in terms of two coefficients: the number of elements and the number of self-inverse
elements (x s.t. x = x−1).

This choice is motivated by the desire to use counting, as this is an important tool in producing
classification results, yet has been missing from our previous approaches. The approach also reduces the
number of different properties needed to fully classify structures of a particular size. Moreover, we have
chosen to focus our first experiments on concepts which count the number of elements of a particular type
because there is a standard – if cumbersome – way of formalising such set-size results in first order logic,
which enables us to get proofs of our results from automated theorem provers. In sections §2 and §3, we
describe how we generated and then proved parameterisations of loops, groups and quasigroups. While
we concentrate purely on counting elements here, we have also already experimented with counting
substructures [6] and will consider counting sub-algebras and comparing their sizes in future work. In
§5, we discuss further future work and, in particular, we use the results from our experiments presented
in this paper to suggest improvements to our bootstrapping approach.

2 Generating Classifying Parameterisations

Suppose we start with a set of algebraic structures A = {A1, . . . ,An} and a list of element-type concepts
C = {c1, . . . ,ck}. An element-type concept is a boolean test on an element in an algebraic structure,
for instance whether the element is idempotent (x ∗ x = x). We then define the profile of a given a ∈ A
with respect to C as: P(a) = 〈|{x ∈ a : c1(x)}|, . . . , |{x ∈ a : ck(x)}|〉. We further say that C represents
an element-type parameterisation of A if no pair of algebraic structures in A have the same profile. If A
contains representatives of each isomorphism class up to a certain size n for a specific algebraic structure,
then the parameterisation can be used to classify that structure up to size n, and this classification can be
proved (see next section).

We constructed such classifying parameterisations for loops up to size 5, groups up to size 8 and
quasigroups up to size 4 as follows (for clarity, we will use the groups up to size 8 as an illustrative
example). We started with a set of groups, A, with each member being a representative of a different
isomorphism class, and all the isomorphism classes covered. We used A in the background knowledge
for the HR automated theory formation system. Details of how HR works can be found in [2]. For our
purposes here, HR is a concept generator, i.e., given some background concepts such as the multiplication
operator in groups, HR will invent concepts such as commutativity, etc. In particular, HR is able to
generate hundreds of element-type concepts.
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Domain Max size Classes Achieved Steps Element-types Classifiers Time (s)
Groups 8 14 14 1000 32 3 28
Loops 5 11 11 1000 32 3 10
Loops 6 120 86 40000 736 11 2903

Quasigroups 4 42 42 10000 523 5 215

Table 1: Details of parameterisations achieved in loop, group and quasigroup theory

We initially ran HR for 1000 theory formation steps. This value could be increased if no full clas-
sification could be found in the given number of steps. Each step attempts to construct a new concept,
but may result in a conjecture being made instead. From the resulting theory, we extracted the set, C, of
element-type concepts and we used these to automatically construct a parameterisation P as follows: The
first concept in the parameterisation list is chosen as the overall size of the algebraic structure, largely
for reasons of comprehensibility. We then check the parameterisation against A, and remove from A any
structures a for which the profile of a is different from all the others. We then iteratively add to P the
concept c ∈C which differentiates the largest number of pairs of structures from A. Note that we say c
differentiates a1 and a2 iff |{x ∈ a1 : c(x)}| 6= |{x ∈ a2 : c(x)}|. Each time a new concept is added, P is
checked against A, and – as before – any structure which has a unique profile is removed. This iteration
continues until either A is empty (in which case a full parameterisation has been constructed), or there
are no concepts left to try. In the output, each structure a is presented with only the concepts needed
to distinguish it from the others. The conjunction of this set of concepts is a classifying concept for the
isomorphism class represented by a.

We ran the same experiment for loops up to size 5. For quasigroups up to size 4, we increased the
number of theory formation steps to 10000, and for loops up to size 6, we increased it to 40000. The
results are presented in table 1.

We see that the method was able to produce full parameterisations in a reasonable time (on a 2.1GHz
machine) for the groups, quasigroups and loops to size 5 datasets. However, it only achieved a partial
classification of 86 of the 120 loop classes up to size 6. Note the the Element-types column above
describes the total number of element-types produced by HR, while the Classifiers columns describes
the number of these which were used in the parameterisation. The group theory parameterisation was
particularly simple, in terms of counting 3 elements types, namely (i) elements themselves (ii) self-
inverse elements and (iii) elements which appear on the diagonal of the multiplication table. The sizes 1
to 5 loop theory parameterisation also required counting only 3 element types: (a) elements themselves
(b) elements on the diagonal of the multiplication table and (c) elements, x such that ∃y (y∗x = id∧y∗y =
x). We think it is an achievement to be able to classify all 42 quasigroups up to size 4 by counting only
5 element types, and to classify 86 of the 120 loops up to size 6 by counting 11 element types.

3 Proving Isomorphism Classes

As we saw above, for each algebraic structure satisfying a set of axioms R, HR produces a conjunction
of concepts which can be used to classify the structure. Each concept expresses a boolean test of the
structure, namely whether the number of elements with a particular logic property is a particular number.
For example, HR returns the cyclic group G of order 4 as the multiplication table given below, together
with the axioms of group theory and the single property 2 : x−1 = x, i.e., that there are exactly two
self-inverse elements in G.

To prove that the conjunctions of set sizes represent classifying concepts, we reuse some of the
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technology implemented for the original bootstrapping algorithm as presented in [3] and its adaptations
to work with satisfiability modulo theories solvers detailed in [5].

G a b c d
a a b c d
b b a d c
c c d b a
d d c a b

In a first step, we translate the set-size properties into full first order logic by expressing the counting
argument in a formal way. For instance, in our example we define a property P as

∃x,y x 6= y∧ x−1 = x∧ y−1 = y∧ (∀z z−1 = z→ (z = x∨ z = y)).

We then need to prove two types of problems: (1) proving that the given conjunction of set-size
properties is an invariant under isomorphism for a particular type of algebraic structure and therefore
serves as a discriminant, and (2) that the discriminant uniquely defines an isomorphism class for algebraic
structures of a given size.

Problems of type (1) are formalised independently of the size of the structures that were involved
during the generation of the properties in question. Thus the property is shown to be a discriminant for
structures of arbitrary size. The problems are easy to formalise as ∀A1,A2 R(A1)∧R(A2)∧P(A1)∧
¬P(A2)→ A1 6∼= A2, where R is as mentioned above the set of axioms describing the algebraic structure
in question. They can be expressed in first order logic by considering the sets A1 and A2 as arbitrary
but different constants and formulating their axiomatisations with disparate operations. Proving these
theorems is relatively easy and we used the first order prover Spass [8]. Problems of type (2) are less
trivial since they are essentially second order problems: we have to show that all algebraic structures that
have property P are also isomorphic to the representant, in our case G, or more formally:

∀A [R(A)∧P(A)]→ [∃φ bijective(φ)∧homomorphic(φ)∧φ(A) = G].

However, since we are in a finite domain, we can explicitly formulate the problem in propositional
logic: We give G in terms of its elements and multiplication table and then formulate all possible bijective
mappings from an arbitrary structure A onto the elements of G. However, since the number of mappings
to consider is n!, where n is the size of the structures A and G, the technique quickly becomes infeasible,
even for small n. We therefore use a computer algebra device by restricting the mappings to consider a
generating system of G, i.e., a set of elements that can generate all other elements of the structure together
with all generating equations. In our example, G is the cyclic group of size 4, and thus the generating
system is of the form: 〈{c},{a = ((c∗c)∗c)∗c,b = c∗c,c = c,d = (c∗c)∗c}〉. The number of bijective
mappings to consider is then 4 instead of 4! = 24. (For a detailed discussion of these techniques see [5].)
While the problem formulation can still be relatively lengthy, we found that we could solve problems up
to size 8 using CVC-3 [1].

4 Results and Limitations

In our experiments, we were successful in fully automatically generating and proving the necessary
theorems for quasigroups of up to size 4, loops up to size 5 (as presented in §2), and groups up to size
8. We could also show 86 loops 6 problems for which HR could return parameterisations. The most
challenging bit when solving these problems was to produce the problem formulations due to their size.
However, once formulations could be produced they were shown to be valid by CVC-3 in less than 1
minute.
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Despite several optimisations to our routines to more efficiently produce larger problem formalisa-
tions, it is currently infeasible to even generate problems beyond those for size 8 groups and size 6 loops.
This has essentially two reasons:

Firstly, we use a naive formalisation for counting arguments in first order logic. For example, one of
the properties that uniquely determines one of the loops 6 isomorphism classes is that there exists exactly
three elements b, such that

∃c,d,e (d ∗d = c∧¬((∃ f ( f ∗ f = d)))∧b∗b = e∧ e∗ e = c) (1)

To express this argument in standard first order logic we have to explicitly state that

1. there exist three elements that have property (1),

2. these three elements are all different, and

3. there do not exist any other elements with property (1).

The latter is formulated in first order logic by stating that all other elements that have property (1) have
to be equal to one of the three original ones. Thus (1) becomes the following larger formula:

∃x0,x1,x2 (x0 6= x1)∧ (x0 6= x2)∧ (x1 6= x2) (2)

∧ ∃c,d,e (d ∗d = c∧¬((∃ f ( f ∗ f = d)))∧ x0 ∗ x0 = e∧ e∗ e = c)
∧ ∃c,d,e (d ∗d = c∧¬((∃ f ( f ∗ f = d)))∧ x1 ∗ x1 = e∧ e∗ e = c)
∧ ∃c,d,e (d ∗d = c∧¬((∃ f ( f ∗ f = d)))∧ x2 ∗ x2 = e∧ e∗ e = c)
∧ ∀y(∃c,d,e(d ∗d = c∧¬((∃ f ( f ∗ f = d)))∧ y∗ y = e∧ e∗ e = c)

→ (y = x0)∨ (y = x1)∨ (y = x2))

The resulting problems are beyond the power of current first order systems, even for algebraic structures
of small size (cf. [5]). As alternative we therefore employ SMT solvers, that can deal much more effec-
tively with large problems in finite domains. However, they generally require ground formulas as input.
While they can be simply generated by eliminating the quantifiers over the finite domain, formulas and
problems become very quickly unwieldily large.

This problem can be partially overcome as CVC-3 allows for problem formulations involving quan-
tifications, where the quantifiers are restricted over a type that represents the finite set of our algebraic
structure. Unfortunately, CVC-3’s calculus is incomplete for quantified input formulas, which often
leads to a non-conclusive result when given problem formulations containing quantifiers. Thus the only
alternative is again to supply the quantifier free problem. But, for example, eliminating the quantifiers of
formula (2) over a domain of six elements leads to a formula that is of size 61 MB. And while CVC-3
can deal with problems of several hundred MB in size, generating the actual input becomes quickly in-
feasible. We therefore currently adopt the strategy to only generate fully grounded problems if CVC-3
can not find a proof given the quantified problem. Unfortunately our experience so far shows that for
larger problems CVC-3 only rarely succeeds on the quantified problems.

5 Conclusions and Future Work

We have shown that it is possible to both derive and prove novel element-type classifying parameter-
isations of algebraic domains. These classifications have an advantage of simplicity and homogeneity
over our previously constructed classifications, because they require understanding of only a handful of
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element-type concepts. Also, the classification of smaller algebraic structures share concepts with those
of larger structures: another improvement on our previous results.

This work suggest the following improvement to our existing bootstrapping method [3]. Given an
axiomatisation of an algebraic domain, A, we will attempt to build a classification tree for size 1 algebras,
then size 2, and so on, until computational limits are reached. The method should proceed as usual, but
only invent invariants which count the size of sets of elements. Furthermore, suppose that every time the
tree for algebras of size n is produced, the system adds to a global list, I, all the new invariant properties
it has needed to invent to achieve the classification. Then, before attempting to produce the classification
tree for size n + 1, the system should pro-actively check to see whether any p and k such that p ∈ I and
k ∈ {0, . . . ,n + 1} is a classifying concept, i.e., the concept of an algebraic structure, S, being such that
|{x ∈ S : p(x)}|= k uniquely classifies structures of type A and size n+1. The pairs (p,k) for which this
is true will form the basis of the classification tree for size n + 1, while for every pair (p,k) for which
this is not true, the system could see whether a conjunction of pairs of properties provides a classifying
concept, then conjunctions of triples of properties, and so on.

So far we have used the bootstrapping algorithm only to show each of our parameterisations forms
describes indeed an isomorphism class for the algebraic structures of that particular size. That is, we
start the algorithm given the parameterisation, and it terminates returning a single equivalence class.
However, we have not yet integrated the use of parameterisation into the general bootstrapping process,
which will be our next step. If we can also prove results about cross products of algebras, we hope to
produce trees which not only perform the classification, but which are simpler and more in line with
those produced by mathematicians. In particular, we hope to discover families of loops and quasigroups,
where a family is essentially a parameterisation such as those described above and a way of choosing
parameters which guarantees that the resulting concept will describe an isomorphism class for all sizes.
In this fashion, it is not impossible that automated classification tools could begin to have an impact on
research mathematics.
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Abstract

CERES, HLK and ProofTool form together a system for the computer-aided analysis of mathe-
matical proofs. This analysis is based on a proof transformation known as cut-elimination, which
corresponds to the elimination of lemmas in the corresponding informal proofs. Consequently, the
resulting formal proof in atomic-cut normal form corresponds to a direct, i.e. without lemmas, infor-
mal mathematical proof of the given theorem.

In this paper, we firstly describe the current status of the whole system from the point of view of its
usage. Subsequently, we discuss each component in more detail, briefly explaining the formal calculi
(LK and LKDe) used, the intermediary language HandyLK, the CERES method of cut-elimination
by resolution and the extraction of Herbrand sequents. Three successful cases of application of the
system to mathematical proofs are then summarized. And finally we discuss extensions of the system
that are currently under development or that are planned for the short-term future.

1 Introduction

Proof synthesis and analysis form the very core of mathematical activity. While the application of au-
tomated reasoning techniques to proof synthesis is the focus of large research fields such as automated
theorem proving and interactive theorem proving, the corresponding use of automated reasoning tech-
niques in proof analysis has received considerably less attention. Nevertheless, the importance of proof
analysis to mathematics should not be underestimated. Indeed, many mathematical concepts such as
the notion of group or the notion of probability were introduced by analyzing existing mathematical
arguments [Pol54a, Pol54b].

CERES, HLK and ProofTool are three computer programs that form a system for the computer-aided
analysis of mathematical proofs. HLK is responsible for the formalization of mathematical proofs; CERES
is responsible for transformations of formal proofs and for the extraction of relevant information from
them; and ProofTool is responsible for the visualization of formal proofs.

The most useful proof transformation implemented by CERES for the purpose of proof analysis is
cut-elimination. The elimination of cuts from the formalized proofs corresponds to the elimination of
lemmas from the original informal proofs. By interpreting the resulting (cut-free or in atomic-cut normal
form) proof, a mathematician can obtain a new direct informal proof of the theorem under consideration.
The elimination performed by CERES follows the CERES method [BL00], which relies on the resolution
calculus and is essentially different from reductive methods such as the first algorithm for cut-elimination
introduced by Gentzen [Gen69]. On the other hand, for the extraction and storage of relevant information
from proofs, CERES currently uses the ideas of characteristic clause set and Herbrand sequent.

In this paper we start with an overview of the system, followed by a discussion of some details
of each of the three component programs. Three successful cases of application of the system to real
mathematical proofs are then summarized. And finally, we present our plans for the further development
and extension of the system.
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2 Overview of the Architecture and Workflow

Figure 1 sketches how HLK, CERES and ProofTool can be used by a mathematician to analyze existing
mathematical proofs and obtain new ones.

Figure 1: Working with HLK, CERES and ProofTool.

According to the labels in the edges of Figure 1, the following steps are executed within the system and
in interaction with the user:

1. The user (usually a mathematician) selects an interesting informal mathematical proof to be trans-
formed and analyzed. Informal mathematical proofs are proofs in natural language, as they usually
occur in mathematics.

2. The user writes the selected proof in HandyLK, an intermediary language between natural mathe-
matical language and formal calculi.

3. The proof written in HandyLK is input to HLK, the compiler of HandyLK.

4. HLK generates a formal proof in sequent calculus LKDe.

5. The formal proof is input to CERES, which is responsible for cut-elimination and various other
proof-transformations that serve as pre- and post-processing, such as proof skolemization, upward
shifting of equality rules and Herbrand sequent extraction.

6. CERES extracts from the formal proof a characteristic clause set, which contains clauses formed
from ancestors of cut-formulas in the formal proof.

7. The characteristic clause set is then input to a resolution theorem prover, e.g. Otter1 or Prover92.
1Otter Website: http://www-unix.mcs.anl.gov/AR/otter/
2Prover9 Website: http://www.cs.unm.edu/ mccune/prover9/
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8. The resolution theorem prover outputs a refutation of the characteristic clause set.

9. CERES receives the refutation, which will be used as a skeleton for the transformed proof in atomic-
cut normal form (ACNF).

10. CERES outputs the grounded refutation in a tree format and the characteristic clause set. Moreover
it extracts projections from the formal proof and plugs them into the refutation in order to generate
the ACNF. The projections and the ACNF are also output. A Herbrand sequent that summarizes
the creative content of the ACNF is extracted and output as well.

11. All outputs and inputs of CERES can be opened with ProofTool.

12. ProofTool, a graphical user interface, renders all proofs, refutations, projections, sequents and
clause sets so that they can be visualized by the user.

13. The information displayed via ProofTool is analyzed by the user.

14. Based on his analysis, the user can formulate new mathematical ideas, e.g. a new informal direct
proof corresponding to the ACNF.

2.1 Implementation

HLK3, CERES4 and ProofTool5 are free and open-source programs written in ANSI-C++ (the C++ Pro-
gramming Language following the International Standard 14882:1998 approved as an American National
Standard), and they are therefore likely to run on all operating systems. However, at this time only Linux
and Mac OS X are supported. Nevertheless, to make it easier for the system to be used also by users of
unsupported operating systems or even by users of Linux and Mac OS X who are not so familiar with
software development, a virtual machine containing the whole system pre-installed is also available for
download.

CERES and ProofTool use XML files satisfying the proofdatabase DTD6 for the storage of formal
logical structures (e.g. the original proof, the ACNF, the projections, the Herbrand sequent).

3 HLK for Proof Formalization

In order to analyze mathematical proofs in an automated way, we must firstly write down the proof
according to the rules of a formal logical calculus, so that the formalized proofs are then well-defined
data-structures, suitable to be manipulated automatically by computers. On the one hand, these data
structures should be as simple as possible, to allow theoretical logical investigations as well as the easy
implementation of algorithms. On the other hand, they should be as rich and close to the natural language
of informal mathematical proofs as possible. Therefore, the chosen formal calculus should optimize a
trade-off between simplicity and richness of the data structures.

With this in mind, the sequent calculus LK was the initial choice. It is a very well-known and well-
studied logical calculus, for which proof-theoretical results abound. The specific variant that we use
is detailed in Subsection 3.1. To bring it closer to the natural language of informal mathematics, we
extended it with definition and equality rules. The resulting calculus is called LKDe and its details are
discussed in Subsections 3.2 and 3.3.
3HLK Website: http://www.logic.at/hlk
4CERES Website: http://www.logic.at/ceres
5ProofTool Website: http://www.logic.at/prooftool
6ProofDatabase DTD: http://www.logic.at/ceres/xml/4.0/proofdatabase.dtd
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However, LKDe is still uncomfortable to be used directly to write proofs down, because its data
structures for proofs are nested and contain many repetitions of formulas in the context of ancestor
sequents. To solve this problem HandyLK was created to serve as an intermediary language, as explained
in detail in Subsection 3.4.

3.1 The Sequent Calculus LK

A sequent is a pair of sequences of formulas. The sequence in the left side of the sequent is called its
antecedent; and the sequence in the right is its succedent. A sequent can be interpreted as the statement
that at least one of the formulas in the succedent can be proved from the formulas in the antecedent. A
sequent calculus proof or derivation is a tree where the leaf-nodes are axiom sequents and the edges are
inferences according to the inference rules of the sequent calculus. Axiom sequents are arbitrary atomic
sequents specified by a background theory (e.g. the reflexivity axiom scheme ` t = t for all terms t,
expressing the reflexivity of equality) or tautological atomic sequents (i.e. A ` A).

There are many sequent calculi. Our variant uses the following rules:

• Propositional-rules:

Γ ` ∆,A Π ` Λ,B
Γ,Π ` ∆,Λ,A∧B

∧ : r
A,Γ ` ∆

A∧B,Γ ` ∆
∧ : l1

A,Γ ` ∆

B∧A,Γ ` ∆
∧ : l2

A,Γ ` ∆ B,Π ` Λ

A∨B,Γ,Π ` ∆,Λ
∨ : l

Γ ` ∆,A
Γ ` ∆,A∨B ∨ : r1

Γ ` ∆,A
Γ ` ∆,B∨A ∨ : r2

Γ ` ∆,A B,Π ` Λ

A→ B,Γ,Π ` ∆,Λ
→: l

A,Γ ` ∆,B
Γ ` ∆,A→ B

→: r

A,Γ ` ∆

Γ ` ∆,¬A
¬ : r

Γ ` ∆,A
¬A,Γ ` ∆

¬ : l

In the rules ∧ : l1,∧ : l2,∨ : r1,∨ : r2, we say that the formula B is a weak subformula of A.

• Quantifier-rules:
Γ ` ∆,A{x← α}

Γ ` ∆,(∀x)A ∀ : r
A{x← t},Γ ` ∆

(∀x)A,Γ ` ∆
∀ : l

Γ ` ∆,A{x← t}
Γ ` ∆,(∃x)A ∃ : r

A{x← α},Γ ` ∆

(∃x)A,Γ ` ∆
∃ : l

For the ∀ : r and the ∃ : l rules, the eigenvariable condition must hold: α can occur neither in Γ

nor in ∆ nor in A. For the ∀ : l and the ∃ : r rules the term t must not contain a variable that is bound
in A.

• Weakening-rules:
Γ ` ∆

Γ ` ∆,A1, . . . ,An
w : r Γ ` ∆

A1, . . . ,An,Γ ` ∆
w : l

where n > 0

• Contraction-rules:

Γ ` A(m1)
1 , . . . ,A(mn)

n

Γ ` A1, . . . ,An
c(m1, . . . ,mn) : r

A(m1)
1 , . . . ,A(mn)

n ` ∆

A1, . . . ,An ` ∆
c(m1, . . . ,mn) : l

where mi > 0 for 1≤ i≤ n and A(k) denotes k copies of A.
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• Permutation-rules:
A1, . . . ,An ` ∆

B1, . . . ,Bn ` ∆
π(σ) : l

Γ ` A1, . . . ,An

Γ ` B1, . . . ,Bn
π(σ) : r

where σ is a permutation which is interpreted as a function specifying bottom-up index mapping,
i.e. Bi = Aσ(i).

• Cut-rule:
Γ ` ∆,A A,Π ` Λ

Γ,Π ` ∆,Λ
cut

3.2 The Sequent Calculus LKe

Equality is widely used in real mathematical proofs. Carrying the axioms of equality along the proof
within the antecedent of the sequents would render large, redundant and unreadable proofs. Therefore,
LK was extended in [BHL+06] to LKe with the following rules:

• Equality-rules:

Γ ` ∆,s = t Π ` Λ,A[s]Ξ
Γ,Π ` ∆,Λ,A[t]Ξ

= (Ξ) : r1
Γ ` ∆,s = t A[s]Ξ,Π ` Λ

A[t]Ξ,Γ,Π ` ∆,Λ
= (Ξ) : l1

Γ ` ∆, t = s Π ` Λ,A[s]Ξ
Γ,Π ` ∆,Λ,A[t]Ξ

= (Ξ) : r2
Γ ` ∆, t = s A[s]Ξ,Π ` Λ

A[t]Ξ,Γ,Π ` ∆,Λ
= (Ξ) : l2

where Ξ is a set of positions in A and s and t do not contain variables that are bound in A.

3.3 The Sequent Calculus LKDe

Definition introduction is a simple and very powerful tool in mathematical practice, allowing the easy
introduction of important concepts and notations (e.g. groups, lattices, . . . ) by the introduction of new
symbols. Therefore, LKe was extended in [BHL+06] to LKDe with the following rules:

• Definition-rules: They correspond directly to the extension principle in predicate logic and in-
troduce new predicate and function symbols as abbreviations for formulas and terms. Let A be a
first-order formula with the free variables x1, . . . ,xk ,denoted by A(x1, . . . ,xk), and P be a new k-ary
predicate symbol (corresponding to the formula A). Then the rules are:

A(t1, . . . , tk),Γ ` ∆

P(t1, . . . , tk),Γ ` ∆
d : l

Γ ` ∆,A(t1, . . . , tk)
Γ ` ∆,P(t1, . . . , tk)

d : r

for arbitrary sequences of terms t1, . . . , tk.

3.4 HandyLK

In this subsection, we will focus on some particular features of HandyLK ’s syntax7. These features make
it more comfortable to write down proofs in HandyLK and then automatically translate them with HLK
to LKDe instead of writing them directly and manually in LKDe.

When typing proofs in a naive notation for LKDe (e.g. a LISP-like notation for tree structures), two
problems are encountered. Firstly, one would have to repeat many formulas that are not changed by the
application of inference rules, i.e. those formulas that occur in the contexts Γ, ∆, Π and Λ and are simply
carried over from the premises to the conclusions. Secondly, large branching proofs quickly become

7HandyLK full syntax specification: http://www.logic.at/hlk/handy-syntax.pdf
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unreadable due to the nesting of subproofs within subproofs. The partial HandyLK code below shows
how the first problem is avoided in the system’s intermediary language for proof formalization.

define proof \varphi 1
proves
all x ( not P(x) or Q(x) ) :− all x ex y ( not P(x) or Q(y) );

with all right
:− ex y ( not P(\alpha) or Q(y) );

with all left
not P(\alpha) or Q(\alpha) :− ;

with ex right
:− not P(\alpha) or Q(\alpha);

continued auto propositional
not P(\alpha) or Q(\alpha) :− not P(\alpha) or Q(\alpha);

;

The code above starts by declaring a proof and the end-sequent that it derives. Then it lists the rules
that have to be applied successively to the end-sequent in a bottom up way. For each inference, only the
auxiliary formulas have to be specified. Context formulas are handled automatically by HLK.

Another useful feature shown above is the HandyLK command “continued auto propositional”. It
specifies that the current sequent can be derived from tautological axioms by application of propositional
rules. In such cases, HLK is able to produce the proof automatically.

For the example above, HLK generates the following LKDe proof:

ϕ1 :=
P(α) ` P(α)
` P(α),¬P(α)

¬ : r

¬P(α) ` ¬P(α) ¬ : l

¬P(α) ` ¬P(α)∨Q(α) ∨ : r1
Q(α) ` Q(α)

Q(α) ` ¬P(α)∨Q(α) ∨ : r2

¬P(α)∨Q(α) ` ¬P(α)∨Q(α),¬P(α)∨Q(α) ∨ : l

¬P(α)∨Q(α) ` ¬P(α)∨Q(α)
c : r

¬P(α)∨Q(α) ` (∃y)(¬P(α)∨Q(y)) ∃ : r

(∀x)(¬P(x)∨Q(x)) ` (∃y)(¬P(α)∨Q(y)) ∀ : l

(∀x)(¬P(x)∨Q(x)) ` (∀x)(∃y)(¬P(x)∨Q(y)) ∀ : r

The other code below shows how HandyLK avoids the problem of nesting and branching. A premise
of any inference can have a link to another proof instead of having the auxiliary subsequent of that
premise (in the example below, the left branch has a link to the subproof ϕ1 and the right branch, a link
to ϕ2). Hence, large subproofs can be specified somewhere else in the file, instead of appearing nested
inside the proof.

define proof \varphi
proves
P(a), all x ( not P(x) or Q(x) ) :− ex y Q(y);

with cut all x ex y ( not P(x) or Q(y) )
left by proof \varphi 1
right by proof \varphi 2;

;
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Finally it should be noted that HandyLK allows parameterizing meta-terms and meta-formulas in
proofs. Hence it is thus capable of expressing recursive definitions of proof schemata, enabling the
user to define infinite proof sequences8. In the code below, for example, a recursive proof is defined,
parameterized by the meta-term n. The proof at level n can refer to the proof at level n−1, pr[n−1], in
the same way that the recursive function f r at level n, f r[n], refers to f r[n−1].

define function f of type nat to nat;

define recursive function fr( x ) to nat
at level 0 by x
at level n by f( fr[n - 1](x) )

;

define recursive proof pr
at level 0 proves
P(a) :- P( fr[0](a) );

...

at level n proves
P(a), all x ( P(x) impl P( f(x) ) ) :- P( fr[n](a) );

...
;

HLK can output the LKDe proof either as a LATEX file or as an XML file satisfying to the proofdatabase
DTD.

4 CERES

After the proof has been formalized in LKDe with HLK, it can be transformed with the CERES system.
Among the transformations that can be performed by CERES the most interesting one is cut-elimination,
which produces a proof in atomic-cut normal form. The ACNF is mathematically interesting, because
cut-elimination in formal proofs corresponds to the elimination of lemmas in informal proofs. Hence the
ACNF corresponds to an informal mathematical proof that is analytic in the sense that it does not use
auxiliary notions that are not already explicit in the theorem itself.

To perform cut-elimination, CERES uses a method that employs the resolution calculus to eliminate
cuts in a global way, instead of the more traditional local reductive methods [Gen69]. The CERES
method has been described in various degrees of detail and with different emphasis in [BL00, BHL+05,
BHL+06, BHL+] and hence it is just sketched in Subsection 4.1.

Although the ACNF is mathematically interesting, it is too large and full of redundant information.
Its direct analysis and interpretation by humans is therefore too difficult. To overcome this, an algorithm
to extract the essential information of proofs has been recently implemented within CERES. It performs
Herbrand sequent extraction and is sketched in Subsection 4.2.

8The Exponential Proofs (http://www.logic.at/ceres/examples/index.html) are a good example of HandyLK being used to define
infinite proof sequences with parameterized meta-terms and meta-formulas
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4.1 The CERES Method

The CERES method transforms any LKDe-proof with cuts into an atomic-cut normal form (ACNF)
containing no non-atomic cuts. The remaining atomic cuts are, generally, non-eliminable, because LKDe
admits non-tautological axiom sequents.

The transformation to ACNF via Cut-Elimination by Resolution is done according to the following
steps:

1. Construct the (always unsatisfiable [BL00]) characteristic clause set of the original proof by col-
lecting, joining and merging sets of clauses defined by the ancestors of cut-formulas in the axiom
sequents of the proof.

2. Obtain from the characteristic clause set a grounded resolution refutation, which can be seen as
an LKe-proof by exploiting the fact that the resolution rule is essentially a cut-rule restricted to
atomic cut-formulas only and by mapping paramodulations to equality-inferences.

3. For each clause of the characteristic clause set, construct a projection of the original proof with
respect to the clause.

4. Construct the ACNF by plugging the projections into the corresponding clauses in the leaves of
the grounded resolution refutation tree (seen as an LKe-proof) and by adjusting the resulting proof
with structural inferences (weakening, contractions and permutations) if necessary. Since the pro-
jections do not contain cuts and the refutation contains atomic cuts only, the resulting LKDe proof
will indeed be in atomic-cut normal form.

Theoretical comparisons of the CERES with reductive methods can be found in [BL00, BL06]. For
illustration, consider the following example:

ϕ =
ϕ1 ϕ2

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y))
cut

ϕ1 =
P(u)? ` P(u) Q(u) ` Q(u)?

P(u)?,P(u)→ Q(u) ` Q(u)? →: l

P(u)→ Q(u) ` (P(u)→ Q(u))? →: r

P(u)→ Q(u) ` (∃y)(P(u)→ Q(y))? ∃ : r

(∀x)(P(x)→ Q(x)) ` (∃y)(P(u)→ Q(y))? ∀ : l

(∀x)(P(x)→ Q(x)) ` (∀x)(∃y)(P(x)→ Q(y))? ∀ : r

ϕ2 =
P(a) ` P(a)? Q(v)? ` Q(v)
P(a),(P(a)→ Q(v))? ` Q(v) →: l

(P(a)→ Q(v))? ` P(a)→ Q(v)
→: r

(P(a)→ Q(v))? ` (∃y)(P(a)→ Q(y)) ∃ : r

(∃y)(P(a)→ Q(y))? ` (∃y)(P(a)→ Q(y)) ∃ : l

(∀x)(∃y)(P(x)→ Q(y))? ` (∃y)(P(a)→ Q(y)) ∀ : l

The crucial information extracted by CERES is the characteristic clause set, which is based on the
ancestors of the cut-formulas (marked here by ?). For this proof, the set is CL(ϕ) = {P(u) ` Q(u); `
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P(a); Q(v) `}. This set is always unsatisfiable, here the resolution refutation δ of CL(ϕ)

` P(a) P(u) ` Q(u)
` Q(a) R

Q(v) `
` R

does the job. By applying the most general unifier σ of δ , we obtain a ground refutation γ = δσ :

` P(a) P(a) ` Q(a)
` Q(a) R

Q(a) `
` R

This will serve as a skeleton for a proof in ACNF. To complete the construction, we have to compute the
projections to the clauses that are used in the refutation, this essentially works by leaving out inferences
on ancestors of cut-formulas and applying σ :

ϕ(C1) =
P(a) ` P(a) Q(a) ` Q(a)
P(a),P(a)→ Q(a) ` Q(a) →: l

P(a),(∀x)(P(x)→ Q(x)) ` Q(a) ∀ : l

P(a),(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y)),Q(a)
w : r

ϕ(C2) =
P(a) ` P(a)

P(a) ` P(a),Q(v)
w : r

` P(a)→ Q(v),P(a)
→: r

` (∃y)(P(a)→ Q(y)),P(a) ∃ : r

(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y)),P(a) w : l

ϕ(C3) =
Q(a) ` Q(a)

P(a),Q(a) ` Q(a) w : l

Q(a) ` P(a)→ Q(a)
→: r

Q(a) ` (∃y)(P(a)→ Q(y)) ∃ : r

Q(a),(∀x)(P(x)→ Q(x)) ` (∃y)(P(a)→ Q(y)) w : l

Finally, we combine the projections and the ground refutation:
ϕ(γ) =

ϕ(C2)
B `C,P(a)

ϕ(C1)
P(a),B `C,Q(a)

B,B `C,C,Q(a)
cut ϕ(C3)

Q(a),B `C
B,B,B `C,C,C

cut

B `C contractions

where B = (∀x)(P(x)→ Q(x)), C = (∃y)(P(a)→ Q(y)). Clearly, ϕ(γ) is a proof of the end-sequent of
ϕ in ACNF.

4.2 Herbrand Sequent Extraction

Our motivation to devise and implement Herbrand sequent extraction algorithms was the need to ana-
lyze and understand the result of proof transformations performed automatically by the CERES system,
especially the ACNF.
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Definition 4.1 (Herbrand Sequents of a Sequent). Let s be a sequent without free-variables and con-
taining weak quantifiers only (i.e. universal quantifiers occur only with negative polarity and existential
quantifiers occur only with positive polarity). We denote by s0 the sequent s after removal of all its quan-
tifiers. Any propositionally valid sequent in which the antecedent (respectively, succedent) formulas are
instances (i.e. their free variables are possibly instantiated by other terms) of the antecedent (respectively,
succedent) formulas of s0 is called a Herbrand sequent of s.

Let s be an arbitrary sequent and s′ a skolemization of s. Any Herbrand sequent of s′ is a Herbrand
sequent of s.

Theorem 4.1 (Herbrand’s Theorem). A sequent s is valid if and only if there exists a Herbrand sequent
of s.

Proof. Originally in [Her30], stated for Herbrand disjunctions. Also in [Bus95] with more modern proof
calculi.

Herbrand’s theorem guarantees that we can always obtain a Herbrand sequent from a correct proof,
a possibility that was firstly exploited by Gentzen in his Mid-Sequent Theorem, which provides an algo-
rithm for the extraction of Herbrand sequents based on the downward shifting of quantifier rules. How-
ever, Gentzen’s algorithm has one strong limitation: it is applicable only to proofs with end-sequents in
prenex form. Although we could transform the end-sequents and the proofs to prenex form, this would
compromise the readability of the formulas and require additional computational effort. Prenexification
is therefore not desirable in our context, and hence, to overcome this and other limitations in Gentzen’s
algorithm, we developed and implemented another algorithm.

To extract a Herbrand sequent of the end-sequent s of an LKDe-proof ϕ without cuts containing
quantifiers, the implemented algorithm executes two transformations:

1. Ψ ([WP08]): produces a quantifier-rule-free LKeA-proof where quantified formulas are replaced
by array-formulas containing their instances.

2. Φ (definition 4.3): transforms the end-sequent of the resulting LKeA-proof into an ordinary se-
quent containing no array-formulas. The result is a Herbrand sequent of the end-sequent of the
original proof.

Definition 4.2 (Sequent Calculus LKeA). The sequent calculus LKeA is the sequent calculus LKe ex-
tended with the following array-formation-rules:

∆,A1,Γ1, . . . ,An,Γn,Π ` Λ

∆,〈A1, . . . ,An〉,Γ1, . . . ,Γn,Π ` Λ
〈〉 : l

Λ ` ∆,A1,Γ1, . . . ,An,Γn,Π

Λ ` ∆,〈A1, . . . ,An〉,Γ1, . . . ,Γn,Π
〈〉 : r

The intuitive idea behind the computation of Ψ(ϕ) for an LKDe-proof ϕ consists of omitting quantifier-
inferences and definition-inferences and replacing unsound contraction-inferences by array-formation-
inferences (omissions and replacements are done in a top-down way and formulas in the downward
path of a changed formula are changed accordingly). More precisely, if a quantified formula is the
main formula of a contraction, then this contraction will not be sound anymore after the omission of the
quantifier-inferences, because its auxiliary formulas will now contain different instances of the quantified
formula instead of being exact copies of the quantified formula. Hence, the unsound contraction infer-
ences are replaced by array-formation inferences, which will collect all the instances of that quantified
formula into an array formula. This idea has been formally defined in [WP08, HLWWP08]. However,
the implemented algorithm follows an equivalent recursive definition, which is more natural to imple-
ment but quite technical, preventing a clean exposition of the fundamental idea of the transformation to
LKeA.
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Definition 4.3 (Φ: Expansion of Array Formulas). The mapping Φ transforms array formulas and se-
quents into first-order logic formulas and sequents. In other words, Φ eliminates 〈. . .〉 and can be defined
inductively by:

1. If A is a first-order logic formula, then Φ(A) .= A

2. Φ(〈A1, . . . ,An〉)
.= Φ(A1), . . . ,Φ(An)

3. If Φ(A) = A1, . . . ,An, then Φ(¬A) .= ¬A1, . . . ,¬An

4. If Φ(A)= A1, . . . ,An and Φ(B)= B1, . . . ,Bm, then Φ(A◦B) .= A1◦B1, . . . ,A1◦Bm, . . . ,An◦B1, . . . ,An◦
Bm, for ◦ ∈ {∧,∨,→}

5. Φ(A1, . . . ,An ` B1, . . . ,Bm) .= Φ(A1), . . . ,Φ(An) `Φ(B1), . . . ,Φ(Bm)

Example 4.1. Let ϕ be the following LKDe-proof:

[ϕ ′]

P(0),P(0)→ P(s(0)),P(s(0))→ P(s2(0)) ` P(s2(0))
∀ : l

P(0),P(0)→ P(s(0)),(∀x)(P(x)→ P(s(x)) ` P(s2(0))
∀ : l

P(0),∀x(P(x)→ P(s(x)),(∀x)(P(x)→ P(s(x)) ` P(s2(0))
c : l

P(0),∀x(P(x)→ P(s(x)) ` P(s2(0))
∧ : l

P(0)∧ (∀x)(P(x)→ P(s(x)) ` P(s2(0))

The LKDe-pseudoproof ϕc with unsound contractions, resulting from the omission of quantifier-
inferences and definition-inferences is:

[ϕ ′]

P(0),P(0)→ P(s(0)),P(s(0))→ P(s2(0)) ` P(s2(0))
c∗ : l

P(0),∇ ` P(s2(0))
∧ : l

P(0)∧∇ ` P(s2(0))

where ∇ stands for the undeterminable main formula of the unsound contraction-inference, since it
contains different auxiliary formulas.

The LKeA-proof Ψ(ϕ), after replacement of unsound contractions by array-formations, is:

[ϕ ′]

P(0),P(0)→ P(s(0)),P(s(0))→ P(s2(0)) ` P(s2(0))
〈〉 : l

P(0),
〈
P(0)→ P(s(0)),P(s(0))→ P(s2(0))

〉
` P(s2(0))

∧ : l
P(0)∧

〈
P(0)→ P(s(0)),P(s(0))→ P(s2(0))

〉
` P(s2(0))

Let s be the end-sequent of Ψ(ϕ). Then Φ(s), which is a Herbrand sequent extracted from ϕ , is:(
P(0)∧ (P(0)→ P(s(0))),

P(0)∧ (P(s(0))→ P(s2(0)))

)
` P(s2(0))
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4.2.1 Further Improvements of Herbrand Sequent Extraction

Preliminary tests of the implemented algorithm described above showed that the extracted Herbrand
sequent still contained information that was irrelevant for the interpretation of the ACNF to obtain a new
informal mathematical proof corresponding to the ACNF. Such irrelevant information occurred in the
form of subformulas of the Herbrand sequent that were introduced by weakening-inferences or as the
weak subformula of the main formula of some other inference. This problem was solved by omitting
the weak subformulas in the construction of Ψ(ϕ). This improvement implies that the extracted sequent
is not strictly a Herbrand sequent anymore, because its formulas are not instances of the formulas of
the original end-sequent. However, the extracted sequent is still valid and contains the desired relevant
information about the used variable instantiations in ϕ .

5 ProofTool

ProofTool is the graphical user interface that displays the original formal proof, the skolemized proof,
the characteristic clause set, the projections, the ACNF and the Herbrand sequent to the user, so that he
can analyze them and obtain a better understanding of the original proof or a new direct informal proof
for the same theorem based on the Herbrand sequent and on the ACNF. It allows the user to zoom in and
out of the proofs and to navigate to subproofs defined by proof links. Although it is mostly intended for
proof visualization, some simple forms of proof editing, e.g. formula substitution and splitting of proofs
by the creation of new proof links, are also possible.

Figure 2: ProofTool Screenshots

6 Successful Experimental Cases

In this section, we summarize three successful cases in which the system was used for the analysis of
mathematical proofs. All the examples below constitute interesting proofs for cut-elimination because
they contain mathematical concepts in the cut-formulas which do not occur in the theorems shown.
More information about each case can be found in the respective referred papers containing the detailed
analysis.

6.1 The Tape Proof

The first proof that was analyzed using CERES (in [BHL+05] within LK and in [BHL+06] within LKDe)
was originally defined in [Urb00]. This proof deals with the following situation: We are given an infinite
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tape where each cell contains either ‘0’ or ‘1’. We prove that on this tape there are two cells with the
same value. The original proof goes on to show that on the tape, there are infinitely many cells containing
‘0’ or infinitely many cells containing ‘1’. From this, it follows that there are two cells having the same
value. Clearly, these lemmas are much stronger than what is actually needed to prove the theorem, and
exactly these lemmas where eliminated by the use of CERES.

By using different resolution refinements (positive and negative hyperresolution), two different reso-
lution refutations (resulting in different ACNFs) were produced. After analysis of the argument contained
in the refutations, it turns out that the refutations differ not only formally, but also in their mathematical
interpretation. This showed that for any particular proof ψ , CERES may produce several ACNFs of the
end-sequent of ψ and each of them may contain a mathematically different argument. This example
exhibited the diversity of analytic proofs that may be obtained by using CERES.

Furthermore, in [Het07], two different tape proofs with different cut-formulas were analyzed com-
paratively. It has been observed how the characteristic clause sets of each proof determine and restrict
the kinds of mathematical arguments and direct informal mathematical proofs that can be obtained from
the ACNFs of each proof. This shows the potential of CERES not only for the analysis of single proofs,
but also for the comparative analysis of different proofs of the same theorem.

6.2 The Prime Proof

In [BHL+], the system was used to analyze Fürstenberg’s proof of the infinity of primes. This proof uses
topological concepts in its lemmas and proves that there are infinitely many primes. A central part in the
formalization of this proof was the possibility of expressing proof schemas in HLK— here, it was used to
formalize the inductive parts of the proof (e.g. that the union of closed sets is closed). Each proof ϕ(k)
according to the proof schema ϕ expresses that there are more than k primes. The collection of all such
proofs implies that there are infinitely many primes.

The refutation and analysis of the characteristic clause set extracted by CERES led to a direct informal
proof of the infinity of primes, which corresponded to the well-known Euclid’s argument for the infinity
of primes. Thus CERES could essentially transform Fürstenberg’s proof into Euclid’s proof.

6.3 The Lattice Proof

In [HLWWP08], the usefulness of a Herbrand sequent for understanding a formal proof was demon-
strated on a simple proof from lattice theory showing that L1-lattices (semi-lattices satisfying “inverse”
laws) are L2-lattices (semi-lattices satisfying the absorption laws) by firstly showing that L1-lattices are
L3-lattices (partially-ordered sets with greatest lower bounds and least upper bounds) and then showing
that L3-lattices are L2-lattices.

The formalization of the proof with HLK resulted in a proof with 260 inferences where the concept
of L3-lattice appears, as expected, as a cut-formula in a cut-inference. The elimination of cuts with
CERES resulted in a proof in atomic-cut normal form (ACNF) containing 214 inferences and no essential
cuts. The informal proof corresponding to the ACNF would be a direct mathematical argument proving
that L1-lattices are L2-lattices. However, due to its size, the interpretation of the ACNF to extract this
informal proof is hardly possible. On the other hand, the Herbrand sequent extracted from the ACNF
contains only 6 formulas. Analyzing the Herbrand sequent alone, it was possible to obtain the desired
informal direct proof.
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7 Future Directions

The development of our systems focuses on the analysis of mathematical proofs. However, it could
also be extended to other applications of the transformation and analysis of formal proofs, e.g. for the
computation of interpolants in symbolic model checking [McM03, HJMM04].

In the following subsections, we will discuss a few improvements to the system formed by CERES,
HLK and ProofTool that are currently under development or that shall be developed in the future.

7.1 The Proof Profile

The proof profile [Het07, Het08] is a refinement of the characteristic clause set which, in addition to
the logical information about the cut-formulas, incorporates also combinatorial information about the
structure of the proof. This leads to an optimization of the CERES method in the sense that atomic-
cut normal forms generated by using the profile will always be at most the size of those generated by
using the characteristic clause set, and furthermore, the profile is stronger in detecting certain kinds of
redundancies which can yield even a non-elementary speed-up with respect to an atomic-cut normal
form generated by using the characteristic clause set. Moreover, not only is the proof profile a practical
optimization but it also gives important theoretical benefits: they have been used in [HL07] to obtain new
results about the relation between simple proof transformations and cut-elimination. Therefore, CERES
will be extended to make it possible to use the proof profile instead of the characteristic clause set.

7.2 Extension to Second-order Logic

Second-order logic extends first-order logic by allowing quantification over set variables. The reasons for
considering an extension of the CERES method to second-order logic are twofold: first, the second-order
induction axiom

(∀X)(0 ∈ X ∧ (∀x)(x ∈ X → x′ ∈ X)→ (∀x)x ∈ X)

enables proofs by induction to be handled on the object level, whereas induction in first-order logic
can only be handled by (non-tautological) rules or by proof schemas. This then allows the induction
component of proofs to be handled in the same way as any other formula occuring in a proof. Secondly,
a comprehension axiom scheme

(∃X)(∀x)(x ∈ X ↔ ϕ(x))

can be formulated in second-order logic, which allows one to assert the existence of sets defined by
formulas ϕ(x). Certainly, the definition of sets by formulas is a very natural mathematical operation:
consider as an example the sentence

(∃X)(∀x)(x ∈ X ↔ (∃z)2∗ z = x)

which asserts the existence of the set of even numbers.
Note that the second-order axioms of induction and comprehension are preferable to the correspond-

ing schemes of first-order arithmetic and set theory in this context: the goal of proof analysis by cut-
elimination is to remove certain mathematical concepts from the proof. If, however, these concepts
appear in instances of axiom schemes in the end-sequent of the proof with cuts, they will also appear
in the end-sequent of the cut-free (or ACNF) proof. In the second-order formulation, preserving the
end-sequent does not imply preserving the instances of the schemes.

As second-order logic distinguishes between set variables and individual variables, it does not suffer
from Russel’s paradox. Still, second-order arithmetic (even with restrictions on ϕ(x) in the comprehen-
sion scheme) is powerful enough to prove a large part of ordinary mathematics (see [Sim99]).
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Extending CERES to second-order logic is non-trivial: In first-order logic, proof skolemization is
used as an essential technical tool to remove strong quantifier rules going into the end-sequent from the
proof. In second-order logic, the corresponding transformation can only be applied in very special cases
(we must restrict the way in which weak second-order quantifiers occur). Consider for example:

P(β ,a) ` P(β ,a)
∀ : l(∀x)P(x,a) ` P(β ,a)
∀ : r(∀x)P(x,a) ` (∀z)P(z,a)

P(α,b) ` P(α,b)
∀ : l(∀z)P(z,b) ` P(α,b)
∀ : r(∀z)P(z,b) ` (∀z)P(z,b)
→: l

(∀x)P(x,a),(∀z)P(z,a)→ (∀z)P(z,b) ` (∀x)P(x,b)
∀2 : l λx.(∀z)P(z,x)

(∀x)P(x,a),(∀X)(X(a)→ X(b)) ` (∀x)P(x,b) →: r
(∀X)(X(a)→ X(b)) ` (∀x)P(x,a)→ (∀x)P(x,b)

Skolemization of the proof would yield

P(s2,a) ` P(s2,a)
∀ : l(∀x)P(x,a) ` P(s2,a)

P(s1,b) ` P(s1,b)
∀ : l(∀z)P(z,b) ` P(s1,b)
→: l

(∀x)P(x,a),P(s2,a)→ (∀z)P(z,b) ` P(s1,b)
∀2 : l λx.(∀z)P(z,x)

(∀x)P(x,a),(∀X)(X(a)→ X(b)) ` P(s1,b) →: r
(∀X)(X(a)→ X(b)) ` (∀x)P(x,a)→ P(s1,b)

where the ∀2 : l rule application is clearly not sound. For this reason, we will investigate an extension of
the CERES method that deals with proofs that have not been skolemized.

Also, resolution in second-order logic loses some nice properties of its first-order counterpart: first-
order logic is semi-recursive and therefore we can always find a resolution refutation of the characteristic
clause set. This is not the case for second-order logic. Still, there exist implementations of higher-order
resolution provers (e.g. Leo, see [BK98]), which we plan to adapt for use with CERES in second-order
logic.

7.3 Handling Non-skolemized Proofs and Elimination of Single Cuts

As mentioned in the previous section, skolemization of proofs in second-order logic is not always pos-
sible. Also in first-order logic, it would be advantageous to be able to apply the CERES method to
non-skolemized proofs: consider, for example, a proof ϕ containing a proof ψ as a subproof. Applying
CERES to the skolemization of ψ yields an ACNF ψ ′. It is then not possible in general to put ψ ′ in place
of ψ in ϕ: the end-sequent of ψ may contain formula occurrences that are ancestors of cut-formulas in ϕ ,
and skolemization of these formulas will prevent these cuts from being applied (as the cut-formula occur-
rences have different polarities). This leads to the fact that CERES currently only supports elimination
of all cuts of a proof at once.

On the other hand, if CERES is able to handle non-skolemized proofs this immediatly gives rise to a
method to eliminate a single uppermost cut ρ in ϕ by isolating the subproof ending with ρ and applying
CERES to it.

Our experiments with applying CERES to Fürstenberg’s proof on the infinity of primes showed that
current automated theorem provers are too weak to handle the characteristic clause sets of larger proofs.
With a method for eliminating single cuts, the problem of performing cut-elimination on a proof ϕ can
then be reduced to a sequence of cut-eliminations on proofs ψi that contain only one non-atomic cut. The
characteristic clause sets of the ψi will be less complex than that of ϕ , which will enable the theorem
provers to find a refutation more easily.
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The main problem that occurs when considering non-skolemized proofs with CERES are eigenvari-
able violations of the strong quantifier rules that appear in the projections. There are different ideas on
how this problem may be resolved, a promising approach is the following: we restrict the form of the
strong quantifier rules going into the end-sequent by using, instead of eigenvariables, skolem terms as
eigenterms of the rules. In the resulting ACNF, we will then have violations of the eigenterm condi-
tions of these rules by ancestors of cut-formulas. By a proof transformation (essentially reductive cut-
elimination together with certain rule permutations) we can produce a valid ACNF. Intuitively, this works
because reductive cut-elimination always shifts cuts upwards in a proof, so eventually the cut-formulas
will be cut out at the top of the proof, and can not cause eigenterm violations below.

7.4 Extension to Superdeduction Calculi

The first logical calculi followed Hilbert’s style of having few inference rules and many axiom schemas.
The next generations of calculi such as natural deduction and sequent calculi substituted some axiom
schemas by new inference rules. Formal proofs in these calculi were therefore closer to natural informal
mathematical proofs, simply because the new inference rules corresponded more closely to some kinds
of inferences that are usually done in informal mathematical argumentation. However, the new inference
rules substituted only axioms that contained purely logical information about the behavior of connec-
tives and quantifiers. Informal mathematical argumentation, on the other hand, contains many informal
inferences based on axioms containing mathematical information about a concrete domain of mathemat-
ical practice. The trend in the evolution of formal calculi for the actual formalization of mathematical
proofs is to incorporate such mathematical axioms into rules of inference, in the same way that natural
deduction and sequent calculi incorporated purely logical axioms into their rules of inference.

The use of arbitrary initial sequents, equation-rules and definition-rules in LKDe can be seen as a
small step within this trend. Another related but bigger step, though, was done with the proposal of su-
perdeduction rules[BHK07], which roughly correspond to a rigorous combination of our definition-rules
with other LK inferences in such a way that all auxiliary formulas of the superdeduction inference are
atomic. More precisely, superdeduction inferences can be easily simulated in LKDe by substituting them
by many LK inferences followed by a definition-inference. Nevertheless, proofs using superdeduction
inferences are shorter, more readable and closer to informal mathematical proofs than pure LKDe-proofs.

To support superdeduction inferences, the CERES method and CERES, HLK and
ProofTool will have to be extended to support rules of arbitrary arity, because they currently work with
unary and binary rules only and superdeduction rules can have an arbitrary number of premises.

7.5 Better Herbrand Sequents

Our algorithm for Herbrand sequent extraction currently lacks support for definition-rules, because
definition-inferences must be omitted in the transformation to LKeA. We plan to modify the algorithm,
so that it reinserts defined formulas in the extracted Herbrand sequent, in order to further improve its
readability. Better readability could also be achieved by post-processing and compressing long terms
appearing in the formulas of Herbrand sequent. Furthermore, the usage of the Herbrand sequent as a
guide for the construction of new informal direct mathematical proofs could be made easier by enriching
the Herbrand sequent with the axiom links that were used in the proof, similarly to what is done in proof
nets and atom flows.
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7.6 Resolution Refinements for Cut-Elimination

The CERES method relies on a search for a refutation of the characteristic clause set. Although the
characteristic clause set is known to be always unsatisfiable, the search space with unrestricted resolution
or even with typical resolution refinements (e.g. hyper-resolution, unit-resolution, . . . ) can be so large
that theorem provers like Otter and Prover9 do not find a refutation in a reasonable time. This occurs
specially if the proof and its characteristic clause set are large or if the proof contains equality rules, in
which case the refutation needs paramodulation.

We plan to develop resolution refinements that will exploit the structure of the proofs in order to
restrict the search space and possibly even eliminate the need for search altogether.

7.7 Interactive Resolution Theorem Prover

In order to implement the planned resolution refinements, we have implemented a simple but flexible
resolution theorem prover. It was designed with a focus on easy plugability of new refinements and
on the possibility of interaction with the user. However, it supports only unrestricted resolution and
paramodulation so far. It still needs to be tested with large clause sets and other refinements have to be
implemented.

7.8 Improvements for HLK

The continued auto propositional feature of HLK is currently restricted to sequents that can be derived
from tautological axiom sequents. However, since LKDe allows arbitrary atomic axioms specified by a
background theory, it would be interesting if continued auto propositional were extended in order to
generate proofs automatically also for sequents that can be propositionally derived from any arbitrary
axioms, tautological or not.

7.9 Improvements for ProofTool

ProofTool supports global zooming and scrolling, which allow the user to navigate to different parts of
the proof and analyze the structure of the proof in different degrees of detail. However, for very large
proofs, navigating only via global zooming and scrolling has some disadvantages:

• If the user globally zooms in to see details of a part of the proof, he loses his view of whole proof.
Moreover, if he needs to analyze details of various distant regions of the proof, he has to zoom in
to one region, then zoom out and scroll to another far region, then zoom in again, and so on. This
is sometimes very impractical. A solution to this problem could be the use of a magnifying glass,
which would allow the user to locally zoom in, without losing his view of the whole proof, and to
easily change the local zoom to other regions of the proof just by moving the magnifying glass.

• Sometimes the user needs to navigate to some specific regions of the proof, but its precise locations
are not known a priori. Examples are:

– Assume that the user is looking at the root inference of the subproof at the left branch of a
binary inference. Then he might want to go to “the root inference of the subproof at the right
branch of this binary inference”.

– If the user is looking at a certain formula occurrence, he might want to go to “the inferences
that contain ancestors of this formula as their main occurrences”
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In such situations, the user has to manually scroll and search for the desired regions. Ideally, this
problem could be solved by some simple yet expressive enough query language for positions in
proofs. In the short-term, keyboard shortcuts for typical queries could be implemented.

While the previous problems are mainly due to proof size, other problems arise from the existence
of bureaucracy and trivial structural information in LKDe-proofs. Many features shall be added to
ProofTool to overcome this. Unary structural inferences could be hidden; colors could be used to
highlight different interesting objects (corresponding formulas, ancestor paths, inferences, subproofs) in
the proof; and context formulas could be hidden.

Finally, ProofTool’s editing capabilities could be extended to allow simple proof transformations
to be done directly via the graphical user interface.

7.10 Alternatives for HandyLK and HLK

HandyLK is not the only language for the formalization of mathematical proofs. Other languages and
systems, such as COQ9, Isabelle10, Mizar11 and ForTheL12, also aim at helping mathematicians in this
task. We would like to study the possibility of integrating these languages and systems to CERES, as
alternatives to HandyLK and HLK. We foresee two potential compatibility obstacles. On the theoretical
side, these languages and systems might not use the same logics and calculi that CERES uses. On the
implementation side, these alternatives systems must easily output a formal proof object, and this proof
object must be easily convertible to the internal data structures that CERES uses.

8 Conclusion

As summarized in Section 6, the system formed by HLK, CERES and ProofTool has been applied in the
transformation and analysis of real mathematical proofs. It constitutes therefore a successful example
of automated reasoning being employed in mathematics. In this paper, an overview of the system was
given, with a special emphasis on recently added features (e.g. Herbrand sequent extraction) and on
extensions that are currently being developed. We showed the current status of our efforts in employing
automated proof theoretical methods in mathematical analysis, and we pointed the directions that we
intend to follow in order to bring these methods even closer to mathematical practice.
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Abstract

In this paper we compare the performance of various automated theorem provers on nearly all of
the theorems in loop theory known to have been obtained with the assistance of automated theorem
provers. Our analysis yields some surprising results, e.g., the theorem prover most often used by loop
theorists doesn’t necessarily yield the best performance.

1 Introduction

Automated reasoning tools have had great impact on loop theory over the past decade, both in finding
proofs and in constructing examples. It is widely believed that these achievements have transformed loop
theory, both as a collection of deep results, as well as the mode of inquiry itself. Automated reasoning
tools are now standard in loop theory.

To date, all automated proofs in loop theory have been obtained by Prover9 [McC05] or its predeces-
sor Otter [McC03], and all models have been generated by SEM [ZZ] , Mace4 [McC05], and recently the
Loops package for GAP [NV] which G. Nagy used to help find the first nonMoufang, finite simple Bol
loop (definitions to follow in section 2), thus solving one of the oldest open problems in loop theory. The
present paper is devoted to automated theorem proving. For model building, it seems that GAP/Loops is
far better than general purpose automated reasoning tools, especially in certain of the more well known
varieties of loops, as it exploits the underlying group theory with its fast algorithms. (Also, most interest-
ing problems about finding finite loops either include properties that cannot be easily formalized in first
order theory (such as simplicity), or are known to have lower bound at least several hundred elements.)

While [Phi03] is an introduction to automated reasoning for loop theorists, the present paper is in-
tended as its complement: for computer scientists as an introduction to one of the areas in algebra,
namely loop theory, in which automated reasoning tools have had perhaps the greatest impact. The paper
is self-contained in that we don’t assume the reader is familiar with loop theory.

Our goals are twofold. Firstly, we catalogue the loop theory results to date that have been obtained
with the assistance of automated theorem provers. Secondly, we lay the groundwork for developing
benchmarks for automated theorem provers on genuine research problems from mathematics. Toward
that end, we create a library called QPTP (Quasigroup Problems for Theorem Provers) and test the prob-
lems on selected automated theorem provers. Note that we don’t intend to mirror the TPTP library
[SS98]. Rather, we select a representative subset of problems that mathematicians approached by auto-
mated reasoning in their research.

We now give a brief outline of the paper.
Section 2 contains a brief introduction to loop theory, with an emphasis on formal definitions (as

opposed to motivation, history, applications, etc.). We think this self-contained introduction to loop
theory is the right approach for our intended audience: computer scientists interested in applications of
automated reasoning in mathematics. For a more rigorous introduction to the theory of loops see [Bel67],
[Bru71], or [Pfl90].

Sutcliffe G., Colton S., Schulz S. (eds.); Proceedings of ESARM 2008, pp. 42-54
∗This work is a part of the research project MSM 0021620839 financed by MŠMT ČR. The second author was partly

supported by the GAČR grant #201/08/P056.
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Section 3 contains a catalogue of all the theorems from loop theory that we used in our analysis.
Taken together, the papers that contain these theorems—and we give full citations for all of them—
constitute a complete list of those results in loop theory that have been achieved to date with the assistance
of automated theorem provers.

Section 4 is devoted to the tests of selected theorem provers on these results.
Section 5 contains final thoughts as well as suggested directions for future work.
Additional information on our library, the problem files and the output files may be found on the

website

http://www.karlin.mff.cuni.cz/~stanovsk/qptp

2 Basic Loop Theory

We call a set with a single binary operation and with a 2-sided identity element 1 a magma. There are
two natural paths from magmas to groups, as illustrated in Figure 1.
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Figure 1: Two paths from magmas to groups.

One path leads through the monoids—these are the associative magmas, familiar to every computer
scientist. The other path leads through the loops—these are magmas in which every equation

x · y = z

has a unique solution whenever two of the elements x, y, z are specified. Since groups are precisely
loops that are also monoids, loops are known colloquially as “nonassociative groups”, and via this di-
agram, they may be thought of as dual to monoids. Many results in loop theory may by regarded as a
generalization of results about groups.

As with the class of monoids, the class of loops is too large and general to yield many of its secrets to
algebraic inquiry that doesn’t focus on narrower subclasses. Here, we simply catalog a few of the most
important of these subclasses (the abundant evidence arguing for their importance may be found in many
loop theory sources).

First, a comment about notation: we use a multiplication symbol for the binary operation. We usually
write xy instead of x · y, and reserve · to have lower priority than juxtaposition among factors to be
multiplied, for instance, y(x · yz) stands for y · (x · (y · z)). We use binary operations \,/ of left and right
division to denote the unique solutions of the equation x · y = z, ie., y = x\z and x = z/y. Loops can thus
be axiomatized by the following six identities:

x ·1 = x, 1 · x = x,

x\(xy) = y, x(x\y) = y, (yx)/x = y, (y/x)x = y.

Loops without the unit element 1 are refered to as quasigroups; in the finite case, they correspond to
Latin squares, via their multiplication table.
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2.1 Weakening associativity

A left Bol loop is a loop satisfying the identity

x(y · xz) = (x · yx)z; (lBol)

right Bol loops satisfy the mirror identity, namely

z(xy · x) = (zx · y)x. (rBol)

In the sequel, if we don’t specify right or left, and simply write “Bol loop”, we mean a left Bol loop.
A left Bol loop that is also a right Bol loop is called Moufang loop. Moufang loops are often axiom-

atized as loops that satisfy any one of the following four equivalent (in loops) identities:

x(y · xz) = (xy · x)z, z(x · yx) = (zx · y)x, xy · zx = x(yz · x), xy · zx = (x · yz)x.

Generalizing from the features common to both the Bol and the Moufang identities, an identity ϕ = ψ

is said to be of Bol-Moufang type if: (i) the only operation appearing in ϕ = ψ is multiplication, (ii) the
number of distinct variables appearing in ϕ , ψ is 3, (iii) the number of variables appearing in ϕ , ψ is
4, (iv) the order in which the variables appear in ϕ coincides with the order in which they appear in ψ .
Such identities can be regarded as “weak associativity”. For instance, in addition to the Bol and Moufang
identities, examples of identities of Bol-Moufang type include the extra law

x(y · zx) = (xy · z)x, (extra)

and the C-law

x(y · yz) = (xy · y)z. (C)

There are many others, as we shall see. Some varieties of Bol-Moufang type are presented in Figure 2
(for a complete picture, see [PV05]).
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Figure 2: Some varieties of weakly associative loops.

For loops in which each element has a 2-sided inverse, we use x−1 to denote this 2-sided inverse of
x. In other words,

x−1x = xx−1 = 1.

In Bol loops (hence, also in Moufang loops), all elements have 2-sided inverses. In Moufang loops,
inverses are especially well behaved; they satisfy the anti-automorphic inverse property

(xy)−1 = y−1x−1, (AAIP)
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a familiar law from the theory of groups. Bol loops don’t necessarily satisfy the AAIP; in fact, the ones
that do (left or right), are Moufang. Dual to the AAIP is the automorphic inverse property

(xy)−1 = x−1y−1. (AIP)

Not every Bol loop satisfies the AIP, but those that do are called Bruck loops. Bruck loops are thus dual
to Moufang loops, with respect to these two inverse properties, in the class of Bol loops.
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Figure 3: The role of AIP.

A loop is power associative if each singleton generates an associative subloop. Bol loops are power
associative. Moufang loops satisfy the flexible law

x · yx = xy · x. (flex)

Flexible Bol loops, either left or right, are Moufang. Left Bol loops satisfy both the left inverse property

x−1 · xy = y (LIP)

and the left alternative property

x · xy = xx · y. (LAP)

The right inverse property (RIP) and the right alternative property (RAP) are defined in the obvious
ways. The inverse property (IP) thus means both the RIP and the LIP, and a loop is called alternative if
it is both RAP and LAP. Moufang loops and C-loops are alternative and have the inverse property. The
weak inverse property is given by

(yx)\1 = x\(y\1). (WIP)

2.2 Translations

In a loop Q, the left and right translations by x ∈ Q are defined by

L(x) : y 7→ xy, R(y) : x 7→ xy.

The multiplication group, Mlt(Q), of a loop Q is the subgroup of the group of all bijections on Q gener-
ated by right and left translations:

Mlt(Q) = 〈R(x),L(x) : x ∈ Q〉.

The inner mapping group is the subgroup Mlt1(Q) fixing the unit element 1. Mlt1(Q) is generated by
the following three families of mappings, thus rendering the definition equational, and fit for automated
theorem provers:

T (x) = L(x)−1R(x),
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R(x,y) = R(xy)−1R(y)R(x),

L(x,y) = L(yx)−1L(y)L(x).

If Q is a group, then Mlt1(Q) is the group of inner automorphisms of Q. In general, though, Mlt1(Q)
need not consist of automorphisms. But in those cases in which it does, the loop is called an A-loop.
Groups and commutative Moufang loops are examples of A-loops.

A subloop invariant to the action of Mlt1(Q) (or, equivalently, closed under T (x), R(x,y), L(x,y))
is called normal. Normal subloops are kernels of homomorphisms, and are thus analogous to normal
subgroups in group theory. (In loops, there is no counterpart of the coset definition of a normal subgroup.)

A loop is called left conjugacy closed if the conjugate of each left translation by a left translation is
again a left translation. This can be expressed equationally as

z · yx = ((zy)/z) · zx. (LCC)

The definition of right conjugacy closed is now obvious, and is given equationally as

xy · z = xz · (z\(yz). (RCC)

A conjugacy closed loop (CC-loop) is a loop that is both LCC and RCC.
We end this section by defining two classes of loops that are closely related to both Moufang loops

and A-loops. RIF loops are inverse property loops that satisfy

xy · (z · xy) = (x · yz)x · y. (RIF)

ARIF loops are flexible loops that satisfy

zx · (yx · y) = z(xy · x) · y. (ARIF)

2.3 Important subsets and subloops

The commutant, C(Q), of a loop Q is the set of those elements which commute with each element in the
loop. That is,

C(Q) = {c : ∀x ∈ Q,cx = xc}.

The commutant of a loop need not be a subloop. Even in those cases when the commutant is a subloop
(for instance, in Moufang loops), it need not be normal (of course, the commutant in a group is normal,
and in group theory it is called the center, as we shall see).

The left nucleus of a loop Q is the subloop given by

Nλ (Q) = {a : a · xy = ax · y,∀x,y ∈ Q}.

The middle nucleus and the right nucleus, Nµ(Q) and Nρ(Q) respectively, are defined analogously; both
are subloops. The nucleus, then, is the subloop given by

N(Q) = Nλ (Q)∩Nµ(Q)∩Nρ(Q).

The center is the normal subloop given by

Z(Q) = N(Q)∩C(Q),

thus coinciding with the language from groups. C(Q) need not have any relationship with N(Q); that is,
C(Q)∩N(Q) = Z(Q) can be trivial. The situation in Bol loops is strikingly different. In a (left) Bol loop
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Q, Nλ (Q) = Nµ(Q), and this subloop need not have any relationship with Nρ(Q), i.e., the intersection
can be trivial. Thus, in a Moufang loop, all nuclei coincide, and N(Q) is a normal subloop. Moreover, if
Q is Bruck, then Nλ (Q)≤C(Q).

The commutator, [x,y] of x and y, in a loop Q is given by

xy = yx · [x,y].

The associator, [x,y,z] of x, y, and z, is given by

xy · z = (x · yz) · [x,y,z].

The point is that the lack of associativity in loops provides a structural richness, part of which can
be captured equationally, thus rendering loops excellent algebraic objects to investigate with automated
theorem provers.

3 The Theorems

The present section catalogues all papers in loop theory to date whose results were obtained with the
assistance of an automated theorem prover. All proofs were obtained by Prover9 or Otter. The proofs
were always translated to human language and usually simplified (none of the papers presents a raw
output from a prover), hence none of the results relies on soundness of Otter/Prover9. As far as we know,
no automatically generated proof was found to be incorrect during translation.

In some cases, the main results weren’t obtained directly with automated theorem provers. Instead,
provers were used to prove key technical lemmas, or even just special cases, which in turn helped mathe-
maticians find proofs of the main results. This is explained in more detail below, see, e.g., our description
of [AKP06].

We list the papers in chronological order. From each paper, we choose up to five theorems for the
QPTP library.

[Kun96a]. This is an important paper, because it was the first to use automated theorem provers in loop
theory and, in fact, one of the first noneasy results in mathematics obtained automatically. The theorem
says that a quasigroup satisfying any one of the four Moufang laws is, in fact, a loop, i.e., has a unit
element. We analyze this result for each of the four Moufang identites. Note that the proof for the third
and the fourth Moufang identities can by done relatively easily by hand, while the proof for the first and
the second one was only discovered by Otter.

[Kun96b]. This is a sequel to the previous paper. The main result is the determination of which of the
Bol-Moufang identities, implies, in a quasigroup, the existence of a unit element. We analyze three of
these identities.

[Kun00]. There are many results in this paper proved by automated theorem provers. We analyze the
following two: (1) If G is conjugacy closed, with a,b ∈G and ab = 1, then ba is in the nucleus of G. (2)
If G is conjugacy closed, the commutant of G is contained in the nucleus.

[KKP02a]. The main result in this paper is that inverse property A-loops are Moufang; we analyze
this result. This was one of the major long-standing open problems in loop theory, and perhaps the most
important automated theorem proving success in loop theory. And it marks the point at which the number
of loop theorists using automated theorem provers in their work jumped from one to three.
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[KKP02b]. There are many results in this paper proved by automated theorem provers; we include the
following four: (1) 2-divisible ARIF loops are Moufang, (2) flexible C-loops are ARIF, (3) Moufang
loops are RIF, (4) RIF loops are ARIF.

[KK04]. There are many results in this paper in which automated theorem provers helped, e.g., finite
nonassociative extra loops have nontrivial centers. We analyze the following result: In an extra loop, z
commutes with [x,y, t] if and only if t commutes with [x,y,z] if and only if [x,y,z][x,y, t] = [x,y,zt].

[KKP04]. There are many results in this paper proved by automated theorem provers. We include the
following one: in CC-loops, associators are in the center of the nucleus.

[KP04]. The main result in this paper is that commutants of Bol loops of odd order are, in fact,
subloops. Obviously, this is not a first order statement, however its proof relies on several lemmas
proved by a theorem prover. We analyze the following one: If Q is a Bol loop, and if a,b ∈C(Q), then
so too are a2, b−1 and a2b.

[KP05]. The main result in this paper is to give a basis for the variety of rectangular loops which
consists of 7 identities, thus improving Krapež’s pre-existing basis of 12 axioms [Kra00]. A rectangular
loop is a direct product of a loop and a rectangular band. A rectangular band is a semigroup which is
a direct product of a left zero semigroup and right zero semigroup. A left (right, resp.) zero semigroup
is a semigroup satisfying x · y = x (x · y = y, resp.). We analyze part of this result by showing that the
identities

x\(xx) = x, (xx)/x = x, x · (x\y) = x\(xy), (x/y) · y = (xy)/y, x\(x(y\y)) = ((x/x)y)/y,

(x\y)\((x\y) · (zu)) = (x\(xz)) ·u, ((xy) · (z/u))/(z/u) = x · ((yu)/u)

imply each of the following identities (in algebras with three binary operations ·,\, and /):

(x\y)\((x\y)z) = x\(xz), (x/y)\((x/y)z) = x\(xz), x(y\(yz)) = xz, ((xy)/y)z = xz,

(x · yz)/(yz) = (xz)/z, (x(y\z))/(y\z) = (xz)/z, (x(y/z))/(y/z) = (xz)/z.

[PV05]. The main result of this paper is the systematic classification of all varieties of loops axioma-
tized by a single identity of Bol-Moufang type, achieved to a large extent automatically. We include a
typical result from [PV05]: in loops, the following two identities are equivalent (and thus both axiomatize
the so-called variety of LC-loops): x(y · yz) = (x · yy)z and xx · yz = (x · xy)z.

[AKP06]. One of the main results in this paper is that in a Bruck loop, elements of order a power
of two commute with elements of odd order. Obviously, automated theorem provers can’t prove this
result directly, as it is a result about infinitely many positive integers. On the other hand, one may use
automated theorem provers to generate proofs about specific integers, and then use these proofs to help
construct the proof of the general result. The three specific cases we analyze here: in a (left) Bruck loop,
elements of order 22 commute with elements of oder 3, elements of order 22 commute with elements of
order 32, and elements of order 24 commute with elements of order 32. The three different cases give rise
to clear performance differences between the automated theorem provers, as we shall see. We note that
this property was used in [AKP06] in a proof of a deep decomposition theorem for Bruck loops. That is,
this also was an important success for automated theorem provers in loop theory.
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[KK06]. There are many results in this paper proved by automated theorem provers. We analyze the
following results: for each c in a power associative conjugacy closed loop, c3 is WIP (i.e., c3(xc)−1 = x−1

for every x), c6 is extra (i.e., c6(x ·yc6) = (c6x ·y)c6 for every x,y) and c12 is in the nucleus. (Initially, the
last property wasn’t obtained directly by Prover9. Interestingly, other provers can do it.)

[Phi06]. The main result in this paper is that the variety of power associative, WIP conjugacy closed
loops is axiomatized, in loops, by the identities (xy · x) · xz = x · ((yx · x)z) and zx · (x · yx) = (z(x · xy)) · x.
We analyze this result.

[PV06]. There are many results in this paper proved by automated theorem provers. We analyze the
following two: (1) in C-loops, the nucleus is normal, and (2) in a commutative C-loop, if a has order 4
and b has order 9, then a · bx = ab · x (this is one of the cases that led to a proof of the decomposition
theorem for commutative torsion C-loops).

[KKP07]. An F-quasigroup is a quasigroup that satisfies the following two equations: x · yz = xy ·
(x\x)z and zy · x = z(x/x) · yx. The main result of the paper is that every F-quasigroup is isotopic to
a Moufang loop. This was a long-standing open problem—it was the first open problem listed in Be-
lousov’s 1967 book [Bel67]. We analyze this result.

[KPV07]. There are many results in this paper proved by automated theorem provers. We analyze the
following one: a C-loop of exponent four with central squares is flexible.

[KPV08]. There are many results in this paper proved by automated theorem provers. We include the
following one: in a Bol loop, if c is a commutant element, then c2 is in the left nucleus if and only if c is
in the right nucleus.

[PV08]. The purpose of this paper is to find group-like axiomatizations for the varieties of loops of
Bol-Moufang type. We include the following typical result: a magma with 2-sided inverses satisfying
the C-law is a loop.

[CDKxx]. A Buchsteiner loop is a loop that satisfies the following identity: x\(xy · z) = (y · zx)/x.
These loops are closely related to conjugacy closed loops, and are closely related to loops of so-called
Bol-Moufang type [DJxx]. The result from [CDKxx] that we analyze here is that in Buchsteiner loops,
fourth powers are nuclear (i.e., x4 ∈ N(Q) for every x ∈ Q).

[KKPxx]. The main result in this paper is that in a strongly right alternative ring (with a unit element),
the set of units is a Bol loop under ring multiplication, and the set of quasiregular elements is a Bol
loop under “circle” multiplication. A right alternative ring is a set, R, with two binary operations, +
and ·, such that under +, R is an abelian group, under ·, R is a right alternative magma, and such that
· distributes over +. A right alternative ring is strongly right alternative if · is a right Bol loop. A
unit in an alternative ring is an element that has a two-sided inverse. The circle operation is given by
x ◦ y = x + y + xy. And finally, an element is quasiregular if it has a two-sided inverse under circle,
e.g. x ◦ x′ = x′ ◦ x = 0. We analyze the following technical result: If a has a 2-sided inverse, then
R(a−1) = R(a)−1 and L(a)−1 = R(a)L(a−1)R(a−1).

49



Automated Theorem Proving in Loop Theory Phillips, Stanovský

[KVxx]. There are many results in this paper proved by automated theorem provers. We analyze the
following one: in a commutative RIF loop, all squares are Moufang elements and all cubes are C-
elements. An element a is a Moufang element if for all x and y, a(xy ·a) = ax · ya. And it is a C-element
if for all x and y, x(a ·ay) = ((xa ·a)y.

A remark on TPTP. The intersection of the TPTP and QPTP libraries is empty (by now). The only
loop theory problem in TPTP is the equivalence of the four Moufang identities (GRP200 – GRP206).
This result is included in the book [MP96], which demonstrates the power of Otter in selected areas of
mathematics (the other loop theory problems in the book are several single axioms).

4 Benchmark tests

In the present section, we analyze the problems in the QPTP library by running them on selected auto-
mated theorem provers. Based on the results of the CASC competition in recent years [SS06], we chose
the following five provers: E [Sch02], Prover9 [McC05], Spass [S], Vampire [RV02] and Waldmeister
[Hil03].

We ran each prover on each file twice: with 3600 and 86400 seconds time limit (1 hour and 1 day).
The problems from the library were translated to the TPTP syntax, and the input files for the provers
were generated by the tptp2X tool. We ran the provers with their default settings, and we didn’t tune any
of the input files for a particular prover, thus obtaining conditions similar to the CASC competition.

Our results are presented in Figure 4. The names of the problems start with the code of the paper in
the bibliography followed by the code of the selected result. In the case when there is no single obvious
way to formalize the statement in first order theory, alternative axiomatizations are given. (For details,
see the QPTP website.) Running time (i.e., the time it took to find a proof) is displayed in rounded
seconds; a blank space means timeout, cross means that the problem is not equational and thus ineligible
for Waldmeister. Running times over 360s (the time limit of the last CASC) are displayed in bold,
running times over 1 hour in italic.

The total number of problems in QPTP is 80, of which 68 are equational. 71 problems were solved
by at least one prover, 38 by all of them. The overall performance of the provers is summarized in Figure
5.

In our study, Waldmeister performed better than the other four provers on equational problems. The
performances of E, Prover9 and Vampire seem to be similar (incomparable in the strict sense), although
E can be quite fast on some difficult problems. Spass seems to be well behind the other provers.

In order to minimize bias in our study, we ignored basic parameter settings. While some provers
work fully automatically (e.g., Vampire), other actually have no default setting (e.g., Waldmeister). In
our case, “default” is defined by the output of tptp2X. In particular, this means the set(auto) mode for
Prover9 and some explicit term ordering for Waldmeister.

In fact, term ordering is perhaps the most influential parameter. Waldmeister’s default ordering is
KBO with weights 1, while Prover9’s default is LPO. If Prover9 is manually reset to KBO, it proves
six additional files, but fails for two files that were proved with LPO; this way, Prover9’s performance
becomes closer to Waldmeister’s. Another influential parameter is symbol ordering. Prover9 chooses a
relatively smart one (inverse > left/right division > multiplication), while Waldmeister gets from tptp2X
an alphabetical one (inverse > left division > multiplication > right division). When reset to the smarter
choice, it’s on average much faster, although it fails to prove any additional problems. (Note that perhaps
the smartest choice is division > inverse > multiplication.) Indeed, parameter setting deserves much
greater attention, but this is beyond the scope of the present study.
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file/prover E 0.999-006 Prover9 1207 Spass 3.0 Vampire 8.0 Waldmeister 806
AKP06 1 0 11 459 6 0
AKP06 2 16 1110 74
AKP06 3
CDKxx 1a
CDKxx 1b
CDKxx 1c
KK04 1 29919
KK04 2 29387
KK04 3 10322
KK06 1a 57 507 59
KK06 1b 922 592
KK06 1c 46277 570
KK06 1d 53534 560
KK06 1e 46687 554
KKP02a 1 3023 26735 x
KKP02a 1alt1 848 36852 553 205
KKP02a 1alt2 848 35016 500 208
KKP02a 1alt3 1001 24832 550 213
KKP02a 1alt4 1018 24242 584 202
KKP02b 1 4 120 99 97 x
KKP02b 1alt1 9 205 488 8
KKP02b 1alt2 3 147 413 484 8
KKP02b 1alt3 9 208 56918 491 9
KKP02b 1alt4 9 190 53195 485 9
KKP02b 2 0 0 475 10 1
KKP02b 3 0 0 0 0 2
KKP02b 4a 31 1462 138 4
KKP02b 4b 0 0 0 0 0
KKP04 1a
KKP04 1b
KKP04 1c
KKP04 2 2856 580
KKP07 1 2265
KKPxx 1 2 0 3 8 0
KKPxx 2a
KKPxx 2b
KP04 1 0 0 0 0 0
KP04 2 0 0 0 0 0
KP04 3 7 73 72463 270 2
KP05 1a 0 0 0 0 0
KP05 1b 0 0 0 0 0
KP05 1c 0 0 0 0 0
KP05 1d 0 0 0 0 0
KPV07 1 0 0 0 0 0
KPV08 1 0 0 0 0 0
KPV08 2 0 0 0 0 0
Kun00 1a 352 7088 12482 705
Kun00 1b 353 7536 15412 736
Kun00 1c 353 3264 19762 706
Kun00 1alt1 38587 690
Kun00 2 0 0 0 0 0
Kun96a 1 56 75 258 x
Kun96a 1alt1 128 112 218 3
Kun96a 1alt2 9 68 238 3
Kun96a 2 57 1256 285 x
Kun96a 2alt1 8 398 284 3
Kun96a 2alt2 51 1282 164 3
Kun96a 3 0 0 0 0 x
Kun96a 4 0 0 0 0 x
Kun96b 1 0 0 1 0 x
Kun96b 2 0 1 9 0 x
Kun96b 3 0 19 161 5 x
Kun96b 3alt1 0 7 125 28 0
Kun96b 3alt2 0 5 148 43 0
KVxx 1 357 1692 49
KVxx 2 1705 3172 95
Phi06 1a 72 29 14 21
Phi06 1b 46 2 8632 6 17
Phi06 2a 0 118 41 1 0
Phi06 2b 0 1 0 473 0
Phi06 2c 0 0 0 0 x
Phi06 3 0 41 857 9 0
PV05 1 0 1 19 6 0
PV05 2 9 5 1 0
PV06 1a 0 0 0 0 0
PV06 1b 0 0 0 0 0
PV06 1c 0 0 0 0 0
PV06 2 34 17 4 0
PV08 1a 0 0 1 0 x
PV08 1b 0 0 0 10 x

Figure 4: Detailed results.

prover E 0.999 Prover9 1207 Spass 3.0 Vampire 8.0 Waldmeister 806
proofs in 360s 53 46 31 44 46
proofs in 3600s 59 53 35 57 56
proofs in 86400s 62 61 39 60 59
timeouts 18 19 41 20 9

Figure 5: Summary.
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Finally, the reader may wonder about those theorems on which all provers were unsuccessful (these
are indicated by blank entries in Figure 4). After all, these are theorems that were first proved with the
assistance of an automated theorem prover (which was the sole criterion for inclusion in our study). Why
were none of the provers able to find proofs in our study? Firstly, we didn’t tune the input files. And,
perhaps more importantly, we didn’t use any advanced techniques in our study (e.g., Prover9’s powerful
hints strategy), which is often the way to obtain a new mathematical result.

5 Conclusions

While we hope our results are interesting to automated reasoning researchers (especially since they in-
volve problems from an active area of mathematical research), they may not be surprising to these same
researchers, informed as these researchers are by the CASC results over the past ten years. Our re-
sults, though, might surprise loop theorists, who are less familiar with most of the provers in our study.
But again, we stress that some of these loop theory results were originally obtained using advanced Ot-
ter/Prover9 techniques such as the hints strategy, or sketches [Ver01]. Could these be implemented in
other provers?

Since the various automated theorem provers have different strengths and weaknesses, loop theorists
could profit by using a suite of theorem provers in their investigations. For instance, the result in [KKP07]
was originally derived as a series of results, a number of steps eventually leading to the main theorem.
In our study, Waldmeister proved it from scratch in 40 minutes. To state the obvious: some theorems
will be missed if one uses only one automated theorem prover. On the other hand, the actual proofs
themselves are, of course, of great importance, and the various automated theorem provers differ greatly
in this regard. Some provers don’t even give the proof, they simply indicate that they’ve found one,
while others, notably Prover9, produce relatively readable proofs, and even include tools to simplify
them further.

There are clearly many opportunities for future work. We intend to keep our catalogue of loop theory
results as up-to-date as possible. We eventually hope to test our files on more automated theorem provers;
in particular, on some instantiation based ones, to check the hypothesis that those are weak on algebraic
problems (that always require a lot of computation with equality). Another obvious direction for future
work is to analyze results in other domains, for instance quasigroups and other nonassociative algebras.

It would be immensely useful to compare the various provers’ performance by using input files and
techniques designed to obtain the best performance for each particular prover. In particular, and for
example, what are the best first order descriptions of properties like “existence of a unit” (the formula
∃x∀y(xy = y & yx = x), or the identities (x/x)y = y,y(x/x) = y, or the identities (x\x)y = y,y(x\x) = y),
or of the Moufang property (in what ways might the fact that the four defining identities of this variety
are equivalent impact “best performance” strategies amongst the various provers?).

A possible new direction of exploiting automated reasoning to prove new theorems about loops
could be, first, to create a knowledge base of definitions and theorems in loop theory (those that can be
expressed within the first order theory of loops) and then to apply tools for reasoning in large theories.
Particularly, such a knowledge base would substantially differ from other recent projects such as the
MPTP [Urb04]. The QPTP library can be viewed as the zeroth step towards such a library.
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Abstract

This is an investigation in the tradition of Fujita et al (IJCAI 1993), Zhang et al (JSC 1996),
Dubois and Dequen (CP 2001) in which CP or SAT techniques are used to answer existence questions
concerning small algebras. In this paper, we open the attack on IP loops, an interesting and under-
investigated variety intermediate between loops and groups.

1 Introduction

Automated reasoning techniques, particularly those of propositional satisfiability (SAT) and finite do-
main (FD) constraint satisfaction, are obviously applicable to the problem of enumerating small alge-
braic structures, and so should standardly be used to answer existence questions at least concerning very
small cases. In this paper, we report on an investigation of IP loops, a variety intermediate between loops
and groups which has been known for many years but to our knowledge never explored in much detail.
We used FINDER [Sla94] to enumerate all IP loops up to order 13, and the commutative ones of order
14, and obtained a number of new results prompted by observation of these algebras. The numbers of
algebras were reported in a recent note [AS08] and the full list of small IP loops is freely available online
[SA07].

1.1 Algebraic background

A quasigroup is a groupoid with left and right division operators / and \. That is, it satisfies the laws:

x(x\y) = y
(x/y)y = x
x\xy = y
xy/y = x

In the finite case, this amounts simply to satisfying the left and right cancellation laws:

xy = xz ⇒ y = z
xz = yz ⇒ x = y

That is, its “multiplication table” is a Latin square, each row and each column being a permutation of the
elements. A quasigroup is a loop iff it has a (right and left) identity: an element e such that

ex = x = xe

for all x. Loops in general are so numerous that almost all work on them has concerned special cases. One
of the earliest classes of loops to be investigated was that of Steiner loops, which satisfy the additional
postulates

(xy)y = x
x(xy) = y

Clearly, in any loop, each element x has a left inverse—an element y such that yx = e—and a right inverse

Sutcliffe G., Colton S., Schulz S. (eds.); Proceedings of ESARM 2008, pp. 55-66
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z such that xz = e. In the case of Steiner loops, both y and z are just x. A weaker condition, also satisfied
by groups, is that the left and right inverse operations coincide, meaning that for every x there is an
element x−1 such that

xx−1 = e = x−1x

Note that (x−1)−1 = x.
A loop is said to have the inverse property, and is called an IP loop, iff it is a loop with inverse such

that for all elements x and y

x−1(xy) = y = (yx)x−1

It is not hard to see that IP loops also satisfy the principle (xy)−1 = y−1x−1. A Steiner loop is an IP loop
of exponent 2 (i.e. such that x2 = e for all x) and a group is simply an associative IP loop. Moufang loops,
which have been studied intensively, are IP loops satisfying the identity

x(z(yz)) = ((xz)y)z

IP loops are of interest as a strong and natural generalisation of both groups and Steiner loops. More-
over, they correspond exactly to semiassociative relation algebras [Mad82] in the same sense that groups
correspond to (associative) relation algebras.1 It is therefore a little surprising that they have attracted
comparatively slight attention from algebraists.

The smallest IP loop that is not a group is of order 7:

∗ 1 2 3 4 5 6 7
e = 1 1 2 3 4 5 6 7

2 2 3 1 6 7 5 4
3 3 1 2 7 6 4 5
4 4 7 6 5 1 2 3
5 5 6 7 1 4 3 2
6 6 4 5 3 2 7 1
7 7 5 4 2 3 1 6

x x−1

1 1
2 3
3 2
4 5
5 4
6 7
7 6

This structure has proper subalgebras {1,2,3}, {1,4,5} and {1,6,7}. Note that the order of these
subloops does not divide the order of the loop, marking a significant difference between IP loops and
groups.2 Associativity fails in that, for instance, (2∗2)∗4 = 3∗4 = 7 while 2∗ (2∗4) = 2∗6 = 5.

2 Generating IP loops

It is frequently useful to enumerate small examples of a class of algebraic structures, so that by examining
what exists, and observing places where no such structures exist, the mathematician can gain a “feel” for
the objects in question. At the simplest, the spectrum (the set of numbers n for which such algebras of
order n exist) can have its initial segment settled by enumeration. In some cases, this suffices to allow
the entire spectrum to be determined; in others, it merely dispposes of some awkward questions and
suggests a conjecture concerning the rest. In many cases, “off the shelf” reasoning systems suffice for
the enumeration, making this an attractive application domain for automated reasoning.

1Let G = 〈S,∗〉 be a groupoid. The field of sets consisting of the power set of L, with ∗ raised to sets in the obvious pointwise
manner, is a relation algebra iff G is a group, and a semiassociative relation algebra iff G is an IP loop.
2A loop in which the order of every subloop divides the order of the loop is said to have the weak Lagrange property. It has the
strong Lagrange property if every subloop has the weak property.
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solve satisfy;
int N;
type element = 1..N;

array[element,element] of var element: star;

constraint
forall (x,y in element) (star[star[star[y,x],y],y] = x);

N = 3;

Figure 1: Zinc encoding of quasigroup existence problem QG5(3)

2.1 History

Fujita et al [FSB93] used the ICOT group’s ‘Model Generation Theorem Prover’, a propositional rea-
soner in the style of SATCHMO [MB88], and other tools including FINDER to solve open problems
in the theory of quasigroups by proving the existence or nonexistence of quasigroup models of certain
equations. During the 1990s, this work was taken up and extended, notably by Hantao Zhang and his
collaborators through the SATO system [ZBH96] and by McCune, Stickel and others [McC, ZS00]. In
the constraint programming community, there were interesting developments concerning efficient encod-
ings [DD01] and in the SAT community concerning symmetry avoidance [Zha96, AH01]. Recently, it
has been shown [APSS05] that preprocessing of SAT encodings using restricted variants of resolution
can simplify some of the quasigroup existence problems to the point that stochastic local search (SLS)
solvers can successfully prove existence (though not nonexistence, of course). Meanwhile, the related
problem of quasigroup completion [GS97] has become a well-established benchmark constraint satisfac-
tion problem, offering as it does a nice balance between the highly structured and the random. Benchmark
collections of SAT, CSP and SMT problems now routinely contain problems about quasigroups.

2.2 Problem representation

The simplest way to represent existence problems about quasigroups, loops, groups or other groupoids
for automated reasoning purposes is to cast them as finite domain CSPs where each entry 〈x,y〉 in the
“multiplication table” of the groupoid is a CSP variable whose domain consists of the elements of the
algebra. Take for example the problem QG5(3). This requires the matrix

* 1 2 3
1
2
3

to be filled with nine entries chosen from the values 1 . . .3, in such a way that they form a Latin square
and that the equation (yx.y)y = x holds for all x and y. In fact, if they satisfy the equation, the cancel-
lation properties follow. In the CSP modelling language Zinc [dlBMRW06] for instance, this is directly
expressible (see Figure 1). Other such languages for constraint programming make it similarly easy to
state the problem.

The equation flattens to ∀x∀y∀w∀z((yx = w ∧ wy = z) ⇒ zy = x) which has 4 variables and there-
fore 34 = 81 domain-grounded instances obtained by substituting the three possible values 1, 2, 3 for
the variables. Each of those instances relates a triple (possibly with repetition) of entries in the table,
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and correspondingly imposes a constraint of cardinality at most 3 on the variables of the CSP. In the
straightforward SAT recension, each possible value assignment a ∗ b = c is represented by a proposi-
tional variable pabc, and each domain-grounded instance of the flattened equation becomes a 3-clause
on these variables. Other encodings are possible, of course, but the suggested one is standard. Once the
problem is so encoded, any FD or SAT solver can be used to solve it. Theorem provers, whether based
on resolution and its variants or on term rewriting, can also be used to make inferences on either the first
order or propositional levels.

To generate IP loops, we need another array of decision variables representing the inverse function,
and of course the appropriate equations. It is useful to add a few redundant constraints, to strengthen
propagation. We added the fact that inverse is of period 2 and the duality equation (xy)−1 = y−1x−1. Since
we wish to enumerate isomorphism classes, it is important to avoid generating too many isomorphic
copies of the solutions, which means we need to break symmetries. In order to break some of the many
symmetries in a simple way, we required the identity e to be the lowest-valued element and x−1 to be in
the range x−1 . . .x+1, with self-inverse elements coming first in the order.

2.3 FINDER is good enough

For our work, we used FINDER, which stands somewhere between the FD and SAT solver families. It
represents the problem in the FD manner rather than explicitly rendering it into SAT, so for example its
variable selection heuristic looks at the FD variables, not at specific values for them—typically it looks
for the smallest available domain—but it reasons somewhat like a SAT solver rather than in typical FD
style. In particular, it uses unit resolution on the ground constraints together with forward-checking as
its notion of local consistency, and it learns nogoods.

FINDER is far from representing the state of the art in finite model building: we expect that similar
results could be produced faster using more recent technology such as Paradox, which is based on the
much more efficient SAT solver Minisat. It suffices for our purpose, however, as it can find the solutions
faster than they can be checked for isomorphism and has completed the order 13 search in reasonable
time.

To count the isomorphism classes, it is necessary either to reason in a sophisticated way about sym-
metries during the search3 or to remove redundant solutions from the output in a postprocessing phase.
We chose the latter: our postprocessor takes each generated IP loop in turn and tries to generate from it
an isomorphic copy that comes earlier in the (row-major) lexicographic order. If it succeeds, the gen-
erated loop is discarded; if it fails, the loop in question is the canonical one of its class and is output.
This isomorphism removal method is rather slow, but requires little memory. Indicated future research
includes incorporating isomorphism detection into the search.

Generating the IP loops of orders up to 11 is easy. We confirmed our results by obtaining the same
numbers with MACE [McC]. Order 12 caused more difficulties, taking unreasonably long for both
FINDER and MACE with their default settings. With a small change to make FINDER more aggressive
about deleting old nogoods, however, we were able to solve the order 12 problem in a matter of hours.

Order 13 was more challenging. Our first partially successful run took over a week without exhaust-
ing the search space. On closer examination, we found that almost all of this time was taken up by
the postprocessor eliminating isomorphic copies. We therefore somewhat strengthened the symmetry-
breaking constraints, in order to reduce the number of copies to be treated, and rewrote the postprocessor
to search less naı̈vely for dominating copies. The result is that the order 13 problem can now be com-
pleted in less than a day on a fairly ordinary desktop machine.

3The GAP-ECLiPSe hybrid of Gent et al [GHKL03] does this, and, given a suitably efficient underlying solver, may be the
preferred method if the present investigations are to be pressed beyond order 13.
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Basic Enhanced
size time (sec) solutions time (sec) solutions

7 0.00 10 0.00 4
8 0.03 128 0.01 50
9 0.11 488 0.01 64

10 2.51 8856 0.50 1294
11 39.30 128488 1.25 5008
12 3026.31 8956032 231.38 626888

Figure 2: Basic versus enhanced symmetry breaking: FINDER runtimes and numbers of solutions before
postprocessing. The fewer (redundant) solutions the better.

The most signficant part of the speedup was that due to the extra symmetry breaking constraints
added by hand to the encoding. These reduced the domains of possible values for the cells in the second
row of the table of the loop operation—the first row is fixed as it lists the elements of the form e ∗ x,
which of course is x in every case. The canonical representative of each isomorphism class is first
in the lexicographic order in which this second row is most significant, so clearly we lose nothing by
constraining the numbers early in the row to be as low as possible. Since e is the first (lowest-numbered)
element, we can conveniently represent all elements as (e+x) where x is an integer in the range 0 . . .N−
1.4 We are concerned to add constraints limiting the values of elements of the form (e + 1) ∗ (e + x)
where 0 < x < N.

Where N is odd, this is simple. There are no fixed points for the inverse operation, so (e + 1)−1 =
(e + 2), so there are two possibilities for the value of (e + 1)∗ (e + 1): it could be (e + 2) or it could be
something else, where “something else” might as well be (e + 3) since all choices are symmetric. By
similar reasoning, for x > 1, the canonical member of each isomorphism class has (e + 1) ∗ (e + x) <
(e+2x).

Where N is even, there is an additional complication. It is possible that some elements other than e
are fixed points for inverse, and it can happen that for all of these fixed points a, the element (e + 1)∗a
is not a fixed point. In that case, the usual upper bound does not apply, but instead the values of such
(e + 1) ∗ a can be assigned arbitrarily. We choose to assign them in ascending order. We introduce a
boolean flag (another decision variable) which will be set just in case the first 6 elements are all fixed
points for inverse and (e+1)∗(e+2) is not a fixed point. Provided the flag is not set, a constraint similar
to that for odd values of N applies. That is, using f(ϕ) to abbreviate (e+1)∗ (e+ϕ):

Basic symmetry breakers:

e≤ x
x−1 < (x+2)
(x−1 = x ∧ y < x) ⇒ y−1 = y

For odd values of N:

x−1 < x+2
x−1 = x ⇔ x = e
f(1) < (e+4)
(x > 1 ∧ 2x < N) ⇒ f(x) < (e+2x)

4Naturally, we could let the elements be the integers 0 . . .N− 1 or 1 . . .N, as in the Zinc encoding suggested in Figure 1, in
which case the notation would be simplified. FINDER, however, is picky about types and complains if we confuse “element”
with “int”, so we keep the long-winded version for present purposes.
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size quasigroups loops IPloops groups
1 1 1 1 1
2 1 1 1 1
3 5 1 1 1
4 35 2 2 2
5 1411 6 1 1
6 1130531 109 2 2
7 1.21×1010 23746 2 1
8 2.70×1015 1.06×108 8 5
9 1.52×1022 9.37×1012 7 2

10 2.75×1030 2.09×1019 47 2
11 — ? — — ? — 49 1
12 — ? — — ? — 2684 5
13 — ? — — ? — 10342 1

Table 1: Numbers of algebras of given order

For even values of N:

f(1) = e
(¬FLAG ∧ 0 < x < N/2) ⇒ f(x) < (e+2x+1)
FLAG ⇒ (e+5)−1 = (e+5)
(FLAG ∧ x > 1 ∧ (e+ x)−1 = (e+ x)) ⇒ (f(x))−1 6= f(x)
(FLAG ∧ 1 < x < y ∧ (e+ y)−1 = (e+ y)) ⇒ f(x) < f(y)

The enhanced symmetry breaking pays handsomely, as shown in Figure 2 where the runtimes and num-
bers of solutions (before postprocessing) with and without the extra symmetry breakers are compared.
It is worth noting that in generating 626,888 solutions to the order 12 problem, for example, FINDER
backtracks only 202,549 times. That means that three quarters of the branches in the search tree end in
solutions, so it is unlikely that significant improvement to the efficiency of the search is possible. Any
future advance will need to involve better symmetry removal, to cut down still further the number of
solutions generated.

2.4 The numbers

Table 1 shows the count of all IP loops of small orders. For comparison, the number of these which are
associative (i.e. groups) is also shown, as are the numbers of quasigroups and loops.5 Clearly, at very
small sizes, associativity has no room to fail given the loop and inverse postulates. Up to order 4, indeed,
the existence of an identity element alone is enough to force a quasigroup to be an abelian group. It
seems from the table, however, that IP loops will resemble loops rather than groups in that, once clear of
the initial noise, the numbers of such algebras will show a monotonic exponential increase with size. At
the same time, it can be seen that the existence of a two-sided inverse is in some intuitive sense a “strong”
property: of the 1030 quasigroups of order 10, one in every hundred billion is a loop, but of these loops
only one in every 40 million trillion has an inverse.

An important subvariety of any variety of groupoid is that obtained by imposing a postulate of com-
mutativity. The numbers of commutative IP loops are shown in Table 2. It was something of a surprise

5The numbers of quasigroups and loops are taken from the paper of McKay et al [MMM07] which also contains an account of
the many errors making up the history of counting these objects.
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size groups non−groups total
1 1 1
2 1 1
3 1 1
4 2 2
5 1 1
6 1 1
7 1 1
8 3 3
9 2 2

10 1 5 6
11 1 1 2
12 2 12 14
13 1 7 8
14 1 179 180

Table 2: Numbers of Commutative IP loops of given order

to observe that the smallest such loop which is not a group is of order 10. It seems that commutativity
tends to enforce associativity, at least at small sizes: only one of the 48 non-associative IP loops of order
11, for instance, is commutative.

3 New results

In abstract algebra, the effect of generating the structures of small sizes is often to provide a supply of data
rather than a supply of theorems. This means that model searches function more like experiments in an
empirical science than like proof searches in mathematics as standardly conceived. The rôle of diagrams
in traditional geometry is somewhat similar: a diagram is not a proof, but it can supply a disproof, and
inspection of diagrams can suggest conjectures to the mathematician with an eye for regularities. In
the same way, identifying patterns in the numbers or distribution of small structures is a good way of
formulating conjectures in abstract algebra.

In the present case, we have been able to use the “data” provided by FINDER to arrive at several new
results concerning IP loops. These are not necessarily very deep mathematics, and their proofs, once the
regularities have been observed, are not especially hard. The trick is to formulate the conjecture in the
first place, and for this purpose access to the quasi-empirical data is invaluable.

3.1 Order of subloops

Steiner loops satisfy the condition ∀x(x2 = e) or equivalently ∀x(x−1 = x). We wondered whether there
was anything to say about the distribution of elements satisfying the self-inverse condition in IP loops
which are not Steiner loops in general. Fortunately, in generating the algebras, as explained in §2 above,
part of our technique was to set the inverse operation before generating the loop operation. Thus we were
presented immediately with the numbers of IP loops of each order with each possible choice of inverse,
where the difference between two inverse operations is just in the number of self-inverse elements. Hence
our generation method itself resulted in a study of the distribution of self-inverse elements among IP
loops of each size. To our initial surprise, there appeared to be no such elements at all (other than the
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size k = 2 k = 3 k = 4 k = 5
2 1 1
3 1
4 1 2
5 1
6
7 1
8 1 4
9 2

10 1 10
11
12
13 64 10

Table 3: Numbers of IP loops satisfying xk = e

identity) in IP loops of odd order. We knew, of course, that Steiner loops are always of even order, but
expected that IP loops of any cardinality would typically contain at least some fixed points for inverse.

They do not, however, as can be shown by a simple counting argument:

Theorem 1. Let L = 〈S,∗〉 be a finite IP loop. Then the cardinality of S is even iff L has an element of
order 2—that is, an element a such that a 6= e but a2 = e.

Proof. Left to right, the result is trivial: since the inverse operation is of period 2, the set of elements of
L which are not fixed points for it must be of even cardinality. If the order of L is even, therefore, there
must also be an even number of self-inverse elements, so e cannot be the only such element.

For the converse, suppose a is self-inverse and distinct from e. Let the operation La be defined on
S by the equation La(x) = a ∗ x. Then La is of period 2, as La(La(x)) = a ∗ (a ∗ x) = a−1 ∗ (a ∗ x) = x.
Moreover, La has no fixed point, as if La(x) = x then a∗ x = x so a = e contrary to the supposition of the
theorem. Therefore La partitions S into pairs, so |S| is even.

Corollary 2. No IP loop of odd order has a subloop of even order.

3.2 IP loops of exponent k

Following on from this theorem, we examined the spectra of the equations xk = e for small values of k.
The observations up to order 13 are summarised in Table 3.6

The spectrum of Steiner loops (the column k = 2 in the table) is well known to consist of 1 and
all integers congruent to 2 or 4 (mod 6). The argument that all Steiner loops fall into that spectrum is
nice enough to be worth rehearsing here. First note that Steiner loops are commutative, because for any
elements x and y, (x.xy)(yx) = y(yx) = x = (x.xy)(xy) so xy = yx. Next, if xy = z then xz = x(xy) = y,
so such loops are “fully commutative” in that for any triple x, y and z, the six equations obtained by
permuting the variables in “xy = z” are all equivalent. Steiner loops thus correspond directly to Steiner
triple systems, or sets of triples of elements from a set such that every pair of elements from the set occurs
in exactly one triple. The identity of the loop is added to allow for the case where x and y are the same.
Evidently, there are three pairs in every triple, so the number of triples in a Steiner triple system is one

6As usual, we assume association to the left, defining x0 = e and xk+1 = xk ∗ x.
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third of the number of pairs of elements in the set. Thus, where the set has n elements, n2− n must be
divisible by 6. Expressing n as 6k + i for some i in 0..5, we see immediately that i2− i must be divisible
by 6, requiring i to be either 0, 1, 3 or 4. Hence n + 1, the order of the Steiner loop, must be congruent
to 1, 2, 4 or 5 (mod 6). But odd orders greater than 1 are impossible by Theorem 1, so except for the
degenerate case n = 1 the order of the loop must be congruent to 2 or 4 (mod 6).

The core of this argument, divisibility by 6, can be generalised.

Theorem 3. Let L be an IP loop of order 3n. Then L contains an element x distinct from e such that
x2 = x−1.

Proof. Consider any elements a, b and c, all distinct from e, such that ab = c in L. Then the following
all hold:

ab = c
cb−1 = a
a−1c = b
b−1a−1 = c−1

bc−1 = a−1

c−1a = b−1

Moreover, the six table entries represented by these equations are all distinct unless one of them is of the
form xx = x−1. If L contains no such x, therefore, the table entries not involving e are partitioned into
blocks of 6. There are (3n−1)2− (3n−1) such entries, so (3n−1)2− (3n−1) is a multiple of 6. That
is, 9n2− 9n + 2 is a multiple of 6. Let 3n = 6k + i where 0 ≤ i < 6. Then 9(6k + i)2− 9(6k + i)+ 2 is
divisible by 6, so 9(36k+12ki+ i2)−56k−9i+2 is divisible by 6, so 9(i2− i)+2 is divisible by 6. But
it is not.

Theorem 4. Let L be an IP loop of exponent 5. Let n be the order of L. Then either n ≡ 1 (mod 12) or
n≡ 5 (mod 12).

Proof. For any element x of L, x4 = x−1 and it is not hard to show that x3 = (x2)−1. It is left as a satisfying
exercise to show that for all x, i and j, xi ∗ x j = xi+ j (mod 5). It follows that L is composed of a number
of subloops of order 5, each of course of the form {e,x,x2,x3,x4}. That is, they are disjoint except for e.
Therefore n≡ 1 (mod 4).

Clearly, L contains no element x distinct from e such that x2 = x−1, so by Theorem 3 its order is not
a multiple of 3 and therefore n 6≡ 9 (mod 12).

Theorem 5. Let L be an IP loop of exponent 3. Let n be the order of L. Then either n ≡ 1 (mod 6) or
n≡ 3 (mod 6).

Proof. For every element x of L, x3 = e or equivalently x2 = x−1. It follows that n is odd, and also
that Theorem 3 is not directly useful. We can adapt the argument, however. If we ignore the first row
and column of the table, we are left with (n− 1)2 entries. Each row contains two “anomalous” entries:
e in the x−1 column and x−1 on the diagonal. Removing those two entries from each row, that leaves
(n− 1)2− 2(n− 1) to be filled with blocks of 6 as before. Thus (n− 1)2− 2(n− 1) is divisible by 6.
Expressing n as 6k + i, we find that i2−4i+3 is divisible by 6, which is to say i = 1 or i = 3.

3.3 The square property

A groupoid has the square property iff (xy)2 = x2y2 for all x and y. It is well known that a group is com-
mutative iff it has the square property. This is not true of IP loops, however. The smallest counterexample
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is of order 10:

∗ 1 2 3 4 5 6 7 8 9 10
e = 1 1 2 3 4 5 6 7 8 9 10

2 2 1 4 3 6 5 9 10 7 8
3 3 4 1 2 7 8 5 6 10 9
4 4 3 2 1 9 10 8 7 5 6
5 5 6 7 9 2 1 10 3 8 4
6 6 5 8 10 1 2 3 9 4 7
7 7 9 5 8 10 3 4 1 6 2
8 8 10 6 7 3 9 1 4 2 5
9 9 7 10 5 8 4 6 2 3 1

10 10 8 9 6 4 7 2 5 1 3

x x−1

1 1
2 2
3 3
4 4
5 6
6 5
7 8
8 7
9 10

10 9

This IP loop is commutative, but lacks the square property as (3∗5)2 = 4 but 32 ∗52 = 2. The converse
is also not valid for IP loops: there are 3 non-commutative IP loops of order 12 with the square property,
and 2 more of order 13.

Another property which suffices for a group to be abelian is that it is of order p2 where p is a prime.
IP loops of such orders are not in general commutative, as for example there are 5 non-commutative
ones of order 9. However, both commutative IP loops of order 9 are groups, leading us to wonder
whether all commutative IP loops of order p2 are groups. The answer is negative: there is a commutative
non-associative IP loop of order 11, so its direct product with any IP loop also of order 11 is a non-
commutative IP loop of order 121 which is not a group.

3.4 Some rare IP loops

A loop is said to be flexible iff it satisfies

x(yx) = (xy)x

and alternative iff

x(xy) = (xx)y
(xy)y = (xy)y

Steiner loops and groups are flexible and alternative. It turns out that the smallest IP loop which is flexible
and alternative but neither a group nor a Steiner loop is of order 12, and there are, up to isomorphism,
only two such loops of order 12 and none of order 13.

Steiner loops and groups are also C-loops, meaning they satisfy

x(y(yz)) = ((xy)y)z

All C-loops are known to be IP loops and alternative. Up to order 13, there is only one non-associative,
non-Steiner C-loop. Again it is of order 12.

4 Future directions

This paper has added to the store of known “small” examples of core algebraic structures. IP loops
inhabit the space between very tightly constrained varieties (groups, Steiner loops) and very loose ones
(quasigroups). They are closely related to an interesting generalisation of relation algebras. We have
detailed the IP loops up to the orders at which the number becomes too big for a mathematician to know
them all. The most obvious extensions of our work are:
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1. Complete the account of the spectrum of IP loops of exponent k, for all k. We have the impression
that it is not very difficult, but settling this issue properly would be satisfying.

2. Extend the investigation to particular classes of IP loops. For example, enumerate the small C-
loops. Since these are comparatively rare, it will be necessary to go to larger sizes before enumer-
ation ceases to be worthwhile. Phillips and Vojtěchovský [PV06] report very small numbers of
C-loops up to order 14, for which they used MACE-4. It is possible that significantly extending
the search may raise different challenges for automated reasoning.

3. Investigate the use of GAP-ECLiPSe or a similar hybrid which brings computational group theory
to bear on the problem of symmetries in search spaces. Since this detects many symmetries and
avoids them early, it is potentially an important tool for getting further with the enumeration of IP
loops or species of them.

4. Experiment with more systematic symmetry breakers such as the “least number” heuristic of Jian
Zhang and its extensions. Dealing with symmetry, rather than with search inefficiency, is the main
bottleneck in the algebra generation process at present.

5. Pick out some new benchmark problems from our work, for finite domain constraint solvers, for
SAT solvers or for SMT systems.7
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