
Linköping Electronic Articles in
Computer and Information Science

Vol. (2000): nr

Linköping University Electronic Press
Linköping, Sweden

http://www.ep.liu.se/ea/cis/2000/ /

An Application-based
Comparison of Automated

Theory Formation and Inductive
Logic Programming

Simon Colton

Division of Informatics
University of Edinburgh

Edinburgh EH1 1HN
United Kingdom

simonco@dai.ed.ac.uk

Published on October 15, 2000 by
Linköping University Electronic Press

581 83 Linköping, Sweden

Linköping Electronic Articles in
Computer and Information Science

ISSN 1401-9841
Series editor: Erik Sandewall

c©2000 Simon Colton
Typeset by the author using LATEX

Formatted using étendu style

Recommended citation:
<Author>. <Title>. Linköping Electronic Articles in
Computer and Information Science, Vol. (2000): nr .
http://www.ep.liu.se/ea/cis/2000/ /. October 15, 2000.

This URL will also contain a link to the author’s home page.

The publishers will keep this article on-line on the Internet
(or its possible replacement network in the future)

for a period of 25 years from the date of publication,
barring exceptional circumstances as described separately.

The on-line availability of the article implies
a permanent permission for anyone to read the article on-line,

to print out single copies of it, and to use it unchanged
for any non-commercial research and educational purpose,

including making copies for classroom use.
This permission can not be revoked by subsequent

transfers of copyright. All other uses of the article are
conditional on the consent of the copyright owner.

The publication of the article on the date stated above
included also the production of a limited number of copies

on paper, which were archived in Swedish university libraries
like all other written works published in Sweden.

The publisher has taken technical and administrative measures
to assure that the on-line version of the article will be
permanently accessible using the URL stated above,

unchanged, and permanently equal to the archived printed copies
at least until the expiration of the publication period.

For additional information about the Linköping University
Electronic Press and its procedures for publication and for

assurance of document integrity, please refer to
its WWW home page: http://www.ep.liu.se/

or by conventional mail to the address stated above.

Abstract

Automated theory formation involves the production of exam-

ples, concepts and hypotheses. The HR program performs au-

tomated theory formation and has been used to form theories

in mathematical domains. In addition to providing a plausible

model for automated theory formation, HR has been applied to

some applications in machine learning. We discuss HR’s applica-

tion to inducing definitions from examples, scientific discovery,

problem solving and puzzle generation. For each problem, we

look at how theory formation was applied, and mention some

initial results from using HR.

Our aim is not to describe the applications in great detail, but

rather to provide an overview of how HR is used for these prob-

lems. We do this to facilitate a comparison of HR and the Progol

Inductive Logic Programming program. We compare both the

concept formation these programs perform and by how they are

(or could be) applied to the four problems discussed.

1

1 Introduction

The automated induction of a concept definition from positive (and possibly
negative) examples of the concept is a well known machine learning problem.
For instance, in [21], Michalski posed the problem of learning a concept
definition describing why five trains were going East and five were going
West. Techniques such as Inductive Logic Programming (ILP) perform
very well at this task and are designed to search in a goal-directed manner
[22]. While they form many concepts along the way, the eventual output is
a single concept.

Automated theory formation starts with roughly the same information
as automated concept induction, namely some background information in-
cluding concepts and examples of them. However, the output of these pro-
grams is a theory, containing many concepts and conjectures about the
domain, rather than a single concept. For this reason, automated theory
formation programs are less goal directed, but have to worry about the in-
terestingness of the concepts and conjectures they produce in order to make
the theory interesting as a whole.

Through a series of publications including [5] and [6], we have introduced
the notion of automated theory formation. Using an implementation in the
HR system, we have applied automated theory formation to various machine
learning tasks in mathematics, including:

(i) scientific discovery, namely the invention of integer sequences [2] [9]

(ii) concept induction, namely sequence extrapolation [8]

(iii) creative problem solving [4]

(iv) puzzle generation (first reported here)

Automated theory formation has much in common with Inductive Logic
Programming, which has enabled us to compare HR with the Progol ILP
implementation [23]. The aim of this comparison has been to place the
style of automated theory formation that HR undertakes within the machine
learning paradigm. In [8] we compared the programs in terms of the concept
formation they undertake and we expand upon this in §6.1 below. We
extend the comparison here by looking at the way in which both programs
are (or could be) used to undertake the above four tasks. This also serves
to demonstrate that automated theory formation is a useful technique for
solving a range of learning problems.

To enable the comparison, in §1.1, we describe automated theory for-
mation in general. In §2, we give an overview of HR, followed in §3 by a
description of how it is used for the four applications. Similarly, in §4, we
overview Progol and in §5 we describe how it is (or could be) used for the
same applications. We compare the programs in §6 and conclude by looking
at the nature of the four applications and suggesting further applications
for automated theory formation.

1.1 Automated Theory Formation

The term ‘automated theory formation’ is overloaded to a certain extent
in machine learning, and various methods have been proposed under this
heading, e.g. [16] and [26]. Our approach has been to look at the structure
and content of scientific theories and propose methods whereby, given some
background information, a theory can be produced.

2

A theory often discusses objects of a particular nature. For example,
in pure mathematics, number theory is about integers, whereas graph the-
ory concerns graphs and group theory concerns groups. Similarly, in non-
mathematical domains there are objects of interest around which a theory
forms, for example acids in chemistry, sub-atomic particles in physics, and
so on. Theories typically contain (i) examples of the objects of interest, (ii)
concepts which discuss the nature of those examples and (iii) statements
highlighting relationships between concepts. For example, in finite group
theory, there are 14 groups up to isomorphism with 8 or fewer elements.
There are also many concepts describing these groups, for example cyclic
groups are a particular type of group and the centre of a group is a subset of
elements of the group. Group theory also contains many statements relating
two or more concepts, for instance if a group is cyclic, then the centre of
the group will contain all the elements, i.e. it will be Abelian. Similarly, in
chemistry, there are examples of acids, e.g. hydrochloric acid, and there are
specialisations of the concept of acids, for instance organic and inorganic
acids. There are also statements about acids, such as: adding an acid to a
base will produce a salt and water.

In mathematics, the statements are often proved via a sequence of logical
inferences. The statements are usually called conjectures until they are
proved, when they become theorems. Theories will contain proofs, disproofs
and counterexamples, as well as open conjectures for which the truth is
unknown. In non-mathematical domains, it is often possible to formalise
the statements and appeal to mathematical proofs. However, sometimes
the plausibility of a statement has to be demonstrated with experiments
and explained via more theory formation. For instance, experiments where
acids and bases are mixed add plausibility to the above statement about
acids and bases, because a salt solution is repeatedly observed. To explain
this phenomenon, chemists may provide a reaction mechanism to show how
the bonds in the chemicals break and re-form during the reaction.

Given this initial synopsis of what theories contain, automated theory
formation should be able to at least find examples of the objects of in-
terest, invent new concepts and make plausible statements relating those
concepts. In mathematics, theory formation should also involve proving
and disproving conjectures. There have been many automatic approaches
to these individual tasks. For instance, the Progol program [23] can invent
new concepts and the MECHEM program [30] can find reaction pathways
in chemistry. Similarly in mathematics, the Mathematica program [31] can
perform calculations and symbolic manipulations, the AGX and Graffiti
programs [1], [14] can make conjectures, the Otter program [19] can prove
conjectures and the MACE program [20] can find counterexamples.

There have only been a few attempts to automate theory formation as a
whole. The AM program [18] was the first to explore mathematical domains
using concept formation and conjecture making. The GT program [13] au-
tomated more mathematical activities by enabling example generation and
theorem proving as well as concept formation and conjecture making. The
HR program [6] performs automated theory formation in domains of pure
mathematics. Using all of its functionality, HR can start with just the ax-
ioms of a finite algebra such as group theory. It will then find examples,
invent concepts, make conjectures, prove theorems and find counterexam-
ples to false conjectures. HR can also work in number theory and graph
theory and we intend to use HR in more mathematical domains.

3

2 The HR Program

The HR program [6], named after mathematicians Hardy and Ramanujan,
is designed to form theories in domains of mathematics such as group theory,
graph theory and number theory. HR starts with background information
such as the axioms of a finite algebra, or some concepts in number theory
such as the divisors of integers, multiplication and addition. Each concept
is supplied with a definition and the user can also supply a finite set of
examples, although this is not necessary in algebraic domains, as examples
can be generated from the axioms. HR uses one of seven general production
rules to base a new concept on either one old concept (in which case we say
the production rule is unary) or two old concepts (a binary production rule).
This produces a set of concepts which form the core of the theory.

Each production rule generates both a definition and a set of examples
for the new concept. Table 1 describes the action of each production rule,
with an asterix indicating a binary production rule. For example, starting
with the concept of divisors of integers in number theory, figure 1 shows
how HR constructs the concept of prime numbers. This concept is produced
using the size production rule to count the number of subobjects (divisors)
followed by the split rule to instantiate this number to 2. This extracts
those numbers with exactly two divisors — prime numbers. The boxes in
figure 1 contain concepts, with the identification number of the concept
given first. Following this, there are tuples of letters representing objects
which the concept relates, with the definition for the relation given after
the tuple. For instance, this definition:

15.[I] : 2 = |{d1 : d1|I}|
indicates that concept 15 describes singletons of integers, I, for which there
are two divisors (the | symbol is commonly overloaded in mathematics for
both divisors and set size). For a more detailed description of the production
rules, see [8].

Rule Action of Production Rule
Compose* Composes predicates by conjunction
Exists Introduces existential quantification
Forall* Introduces universal quantification
Match Equates variables in predicates
Negate* Finds complements to predicates (negating the property)
Size Counts the number of subobjects satisfying a predicate
Split Instantiates variables

Table 1: The action of HR’s seven production rules

It is important to note that a concept has (i) a set of examples, (ii) a
definition, (iii) a categorisation over the examples HR has available and (iv)
a set of conjectures involving the concept. For instance, if HR is working
with the integers 1 to 10 in number theory, then the concept of prime
numbers will have these examples: {2, 3, 5, 7} and the definition given in
figure 1. We call this a specialisation concept because it produces a binary
categorisation of the integers which specialises the concept of integer into
prime and non-prime integers thus:

[1, 4, 6, 8, 9, 10], [2, 3, 5, 7]

4

2. [I,d1] : d1|I

4. [I,N] : N = |{d1 : d1|I}|

size<1>

15. [I] : 2 = |{d1 : d1|I}|

split<2=2>

Figure 1: Construction of the concept of prime numbers

In the theory HR produces, there will also be a set of conjectures about
prime numbers, for example that prime numbers are never perfect squares.
While producing concepts, HR makes these conjectures using empirical ev-
idence. In particular, if it notices that the examples of a new concept are
exactly the same as an old concept (for the data available), it will conjecture
that the definitions of the two concepts are logically equivalent, producing
an ‘if and only if’ conjecture. Similarly, if it notices that the examples of
one concept are all examples of another concept, it will make an implica-
tion conjecture. If it cannot find any examples for a concept, it will make
a non-existence conjecture (i.e. that there are no examples whatsoever).
In finite algebras, HR invokes the Otter theorem prover [19] to prove the
conjectures it makes. Whenever Otter is unsuccessful, HR uses the MACE
model generator [20] to find a counterexample to disprove the conjecture.
In this way, HR forms a theory which contains concepts, examples, open
conjectures, theorems and proofs.

To improve the quality of the theories it produces, HR uses heuristic
measures to estimate the worth of concepts, and performs a best first search
by using the more interesting concepts as the basis for new concepts before
the less interesting ones. The user sets weights for a weighted sum of all
the measures which is taken as an estimate of the worth of each concept.
The measures include intrinsic properties of the concept such as the num-
ber of examples it has, as well as relational measures such as the novelty
of the categorisation it produces, as discussed in [10]. The quantity and
quality of conjectures that a concept appears in is also assessed, with con-
cepts appearing in interesting conjectures assessed as more interesting than
those appearing in dull conjectures. The worth of a theorem is assessed by
the length of the proof produced by Otter, with longer proofs indicating a
more interesting conjecture statement. HR therefore completes a cycle of
mathematical activity where concept formation drives conjecture making
and theorem proving which in turn improves concept formation. HR im-
proves on previous theory formation programs such as AM [18] and GT [13]
by incorporating theorem proving (AM could not prove theorems) and by
being able to work in many domains (GT could only work in graph theory).

5

3 The Application of Automated
Theory Formation

3.1 Inducing Definitions from Examples

The problem of inducing a definition for a concept given some positive ex-
amples of the concept and possibly some negative examples is well known
in machine learning, and we have explored the possibility of using HR in
this fashion. We have used HR to learn definitions for integer sequences,
as discussed in [8] and have also applied HR to Michalski-style train prob-
lems [21] where the program is asked to find a reason why a certain subset
of trains are going East, based on certain characteristics of the train, for
example the shape of the carriages.

A naive way to use theory formation for learning tasks is to supply HR
with background knowledge and ask it to form a theory, stopping when it
has found a concept with examples matching the positive examples of the
target concept and not matching any negative examples. To focus theory
formation, we adapted HR’s heuristic search to favour building on concepts
which achieved a categorisation closer to the one achieved by the target
concept. It is instructive to note that in general, this approach often failed to
learn integer sequences. This was because there was no discernible gradient
for the measures HR uses, and so hill climbing was not possible (see [8] for
further details).

Instead of the heuristic search, we used a ‘unary first’ search enhanced
with a look ahead mechanism. A unary first search is a combination of a
depth first and breadth first search: the unary production rules are used
exhaustively for each new concept before returning to the binary production
rules with old concepts. In this way, each new concept receives some prelim-
inary development, but is not combined with previous concepts until later.
The look ahead mechanism comprises a set of efficient procedures, one for
each production rule. These check whether, given a newly formed concept,
passing it through the production rule (possibly followed by others), would
transform the concept into the target concept.

For example, given a target concept with positive examples 2, 3, 5, 7 and
negative examples 1, 4, 6, 8, 9, 10, when HR forms the concept of number of
divisors, the lookahead mechanism attached to the split production rule uses
the new concept’s datatable to notice that 2, 3, 5 and 7 all have two divisors,
which is not true of the negative examples. Therefore, the step involving
the number of divisors concept and the split production rule is inserted at
the top of the agenda and carried out. The lookahead mechanism is faster
than performing the whole step, because there are overheads involved in
performing a theory formation step, and for the majority of the time, the
lookahead mechanism quickly finds that there is no pattern and terminates.

HR has been successful with both problems about trains and integer
sequences, and we supply some results in [8]. It is particularly effective
when the concept to be learned is a combination of two old concepts, e.g. the
concept of odd prime numbers, which combines the concepts of odd numbers
and prime numbers. Depth first, breadth first and unary first searches do
not find this concept quickly without the look ahead mechanism. However,
with the look ahead mechanism, odd numbers are invented and as soon as
prime numbers are introduced, HR notices that the positive examples are
both odd and prime (and the negative examples are not). HR then combines
these concepts and reaches the solution much faster — the time taken to
learn the concept reduces from 384 to just 5 seconds.

6

3.2 Scientific Discovery

In less than an hour, HR can produce more than 2000 concepts in number
theory. Hence there is the possibility of HR producing new and interesting
concepts, but it is difficult to tell in general whether a concept is either
new or interesting. In number theory, however, there is an Encyclopedia
of Integer Sequences [29] which contains around 60,000 sequences collected
over 35 years by Neil Sloane, with contributions from many mathematicians.
If a concept HR produces in number theory can be interpreted as an integer
sequence which is missing from the Encyclopedia, this gives some indication
— but by no means a guarantee — that the concept may be novel.

We have also used the Encyclopedia to help indicate whether the new
integer sequences HR produces are interesting. To do this for a chosen
sequence S, we have enabled HR to find sequences in the Encyclopedia which
are empirically related to S, with the relations interpreted as conjectures
about S. As a trivial example, given the sequence of prime numbers, HR
makes the conjecture that they are never square numbers. It does this by
noticing that none of the prime numbers it has are in the Encyclopedia
entry for square numbers. As well as finding disjoint sequences, HR is able
to find subsequences and supersequences of the chosen sequences.

Due to the large number of sequences in the Encyclopedia, many se-
quences related to the chosen one are output and we implemented pruning
techniques to discard dull results. For example, it is desirable that a se-
quence conjectured to be disjoint with the chosen sequence has its terms
distributed over roughly the same part of the number line as the chosen
sequence. If so, the two sequences occupy roughly the same part of the
number line yet do not share any terms — which increases the possibility of
the conjecture being true and/or interesting. Therefore, HR discards con-
jectures about disjoint sequences if the overlap of their ranges falls below a
minimum percentage specified by the user.

By finding conjectures relating the sequence HR has invented to the
sequences already in the Encyclopedia, HR provides some evidence that the
sequence is of interest. This ‘invent and investigate’ approach has success-
fully led to 20 sequences invented by HR being added to the Encyclopedia,
all supplied with interesting conjectures. A good example of this is the se-
quence of integers where the number of divisors is prime, which HR invented
(in as much as it was produced by HR and not present in the Encyclopedia).
When asked to find subsequences of this sequence, the first answer produced
was the sequence of integers where the sum of divisors is prime (submitted
to the Encyclopedia by someone else). Interpreted as a conjecture, this re-
sult states that, given an integer, n, if the sum of divisors of n is prime,
then the number of divisors of n will also be prime. We have subsequently
proved this result, and while we do not know for certain whether it is new, it
certainly adds interest to the sequence HR invented. For more information
on the application of HR to the invention of integer sequences, see [2] or [9].

While HR has produced many new sequences using the invent and inves-
tigate approach, it has also produced a new sequence by finding a definition
for a given sequence. That is, we determined that the Encyclopedia of In-
teger Sequences contained a sequence starting a, b, c, d for all a, b, c, d such
that 0 < a < b < c < d < 10 with two exceptions. There was no sequence
starting 4, 5, 6, 9 and no sequence starting 4, 5, 7, 9. We set HR the task of
inventing sequences starting with these terms. In the latter case, within
seconds, HR identified that the concept of prime numbers + 2 fitted the
examples, and this sequence is now in the Encyclopedia. While HR also

7

found a solution for the first sequence, the definition was fairly complicated
(see [8]), and so we have not submitted it to the Encyclopedia.

3.3 Creative Problem Solving

In his book on mathematical problem solving [32] Paul Zeitz suggests a
‘plug-and-chug’ method, whereby calculations are performed and the re-
sults analysed to see if a pattern emerges which might provide insight into
the problem. Zeitz supplies the following problem — taken from a 1930s
Hungarian mathematics contest — as an example where this approach leads
to the solution:

Show that the product of four consecutive integers is never a square number.

Following the plug and chug method, Zeitz calculates examples of the
product of four consecutive integers:

1× 2× 3× 4 = 24 and 2× 3× 4× 5 = 120

The sequence of calculations continues: 24, 120, 360, 840 and a eureka
moment occurs with the realisation that these are all one less than a square.
Zeitz then makes the conjecture that all such numbers are one less than a
square and hence not square numbers. Zeitz states that:

‘Getting to the conjecture was the crux move. At this point
the problem metamorphosed into an exercise!’

To finish the problem, it is necessary to show that the product of four
consecutive integers can be written as a square minus 1:

n(n + 1)(n + 2)(n + 3) = (n2 + 3n + 1)2 − 1.

We have applied HR to plug-and-chug problems of this nature, by get-
ting it to make suggestions which might lead to a eureka moment for the
user. To do this, HR is given a set of numbers which are related to the
problem and asked to suggest properties of the numbers in the hope that
one of the suggestions will provide an insight. To do this, for every new con-
cept HR introduces, if all the given numbers have the property prescribed
by the concept, then the definition is output. For example, when used for
the Hungarian contest problem above, HR is given the numbers 24, 120,
360 and 840. As it forms a theory, it invents types of number and when
the numbers 24, 120, 360 and 840 all satisfy the definition of a particular
number type, the definition is output. Of course, some suggestions do not
provide insight (for example that they are all even numbers). However,
HR eventually invents the concept of squares-minus-one and so finds the
conjecture which metamorphosed the problem.

The application of HR to problem solving is new and we are still ex-
perimenting and compiling a corpus of problems where the plug-and-chug
approach would help. We hope to attach this functionality to a computer
algebra system such as Maple or Mathematica. For more information on
the application of HR to problem solving, see [4].

3.4 Puzzle Generation

Theorem proving has attracted much more attention than conjecture mak-
ing in automated mathematics and similarly, the problem of finding solu-
tions to puzzles [28] has been much more researched than the question of

8

generating interesting puzzles. We are interested here in one particular type
of puzzle, namely odd one out puzzles. These ask the problem solver (as-
sumed to be a human from here on) to choose one object out of a set of
similar objects and give a reason for the choice. The reason must be in
terms of a property which the others share but which is not true of the
object they have chosen, hence it is the odd one out.

We formalise the problem of generating odd one out puzzles in the fol-
lowing way: a puzzle is a set of n objects taken from a (possibly infinite)
set of examples supplied by the user and a specialisation concept which
categorises them into n− 1 positive examples and 1 negative example. The
negative example is the odd one out in the solution and the concept pro-
ducing the categorisation provides the reason why it is the odd one out.
We will concentrate here on the case where n = 4. For example, given the
integers 1 to 20, then the concept of even numbers and the set of integers
{2, 10, 17, 20} forms a puzzle because 2, 10 and 20 are even, but 17 is not.

To add to our specification of the problem, we note that the solution
to the puzzle must be satisfying to human solvers. There are many ways
in which a solution could be unsatisfying, but we concentrate on only one
here: if there is another solution of similar or lesser complexity than the so-
lution given, this will be unsatisfying. As an example, consider the following
puzzle:

Which number is the odd one out?
4 9 16 30

There are at least two simple solutions to this puzzle:

(i) 9 is the odd one out, because the others are even, yet 9 is odd

(ii) 30 is the odd one out, as the others are square numbers but 30 is not

The first solution is perhaps most likely to be given as the answer because
even numbers are more easily recognised than square numbers. However,
this does not detract from the fact that the solutions are of similar com-
plexity, and if the solver gave one solution but the ‘correct’ one was the
other, the solver would probably be dissatisfied with the puzzle. Hence an
additional criterion for puzzles is that they have no other solution of sim-
ilar or lesser complexity. We can use HR to increase the likelihood that a
puzzle satisfies this criteria, but we do not claim to rule out other solutions
completely, and any puzzle HR produces may be unsatisfying. However, the
same is true of human generated puzzles.

The application of HR to puzzle generation is still in its early stages.
The domain we have used so far has a finite number of examples which
we call ‘pgrams’, a shortening of ‘puzzle diagrams’. In figure 2, we give
four example pgrams. Each pgram has either a circle, square or triangle in
each of the four corners, so there are 34 = 81 pgrams in total. The initial
concepts HR starts with in this domain only describe which shapes are in
which positions. HR is not yet given more complicated concepts such as
diagonals or rotation and reflection of one pgram to produce another.

To produce puzzles, we start HR with just one pgram and use it to per-
form concept formation with all the production rules other than compose,
which enables it to exhaust the search. HR introduces counterexamples
to false conjectures, and because there are only 81 pgrams in total, HR
searches all of them for a counterexample. The search is exhausted after 25

9

Figure 2: Four pgrams

Which is the odd one out?

1 2 3 4

Figure 3: Puzzle generated by HR

seconds by which stage 14 pgrams have been introduced as counterexam-
ples and HR has defined 62 specialisations of pgrams. HR then takes each
specialisation concept S in turn and attempts to embed it into a puzzle. To
do this, HR searches for 3 positive and one negative example of S. These
have to be chosen in such a way that none of the other 61 specialisations
provide a rival solution. A rival solution is one for which the odd one out
differs to the negative example chosen for S. Choosing examples for S for
which there is no rival solution increases the chance that the puzzle will be
satisfying, but does not guarantee it.

We are still experimenting with different strategies for producing puzzles
and more work needs to be done to increase the yield. Using the above
approach, only 5 distinct puzzles were found, including the one in figure 3.
This puzzle embeds the concept of having exactly one triangle, hence the
odd one out is number 3, and this puzzle is easy to solve. More importantly,
however, the rival solutions to the puzzle seem to be more contrived. For
instance, number 4 could be considered the odd one out because it has two
circles on its bottom-left to top-right diagonal, whereas the others have both
a circle and a triangle. HR did not start with the concept of diagonals or
invent the concept itself, so it did not notice this rival solution. With the
rival solutions being more contrived, it seems likely that, while it is easy to
solve, the solution to this puzzle will be satisfying to most people, although
we need to confirm this with further experimentation.

4 The Progol Program

Inductive Logic Programming (ILP) is a general purpose machine learn-
ing technique [22]. Concepts are represented as first order logic programs,
which has many advantages, including that they can be interpreted by an
underlying logic programming language. The Progol program [23] uses ILP
with an underlying Prolog interpreter. Progol is usually employed to pro-
duce a logic program which defines a set of given positive examples but
not the given negative examples. The definitions are based on background
predicates supplied by the user.

As an example, Progol can learn the concept of square numbers, given
the background knowledge and positive and negative examples in figure 4.

10

% Mode Declarations
:- modeh(1,square(+intgr))?
:- modeb(1,multiply(+intgr,-intgr,-intgr))?

% Background Knowledge
intgr(1).intgr(2).intgr(3).intgr(4).intgr(5).
intgr(6).intgr(7).intgr(8).intgr(9).intgr(10).
multiply(A,B,C) :- intgr(B), intgr(C), A is B*C.

% Positive Examples
square(1).square(4).square(9).

% Negative Examples
:- square(2). :- square(3). :- square(5).
:- square(6). :- square(7). :- square(8). :- square(10).

Figure 4: Input to Progol for learning the concept of square numbers

Progol produces this answer:

square(A) :- multiply(A,B,B).

This is a Prolog program which will identify a square number as being the
multiplication of some number with itself. The mode declarations at the
top of the input in figure 4 determine the format for the logic program
to be learned, with + indicating the use of a known variable, - indicating
the introduction of a new variable and # indicating possible instantiation.
Progol searches for concepts using the U-Learnability framework [25]. In
this framework, there is a prior probability distribution over the space of
concepts, with the probability being the likelihood that the concept is the
required one.

The construction of new concepts is achieved by inverting deductive
rules of inference to produce inductive rules. One such rule of deduction is
the resolution rule [27]. In its simplest form, this states that if we know:

A→ B and B → C

then we can deduce that:
A→ C

Progol inverts an entailment relation which generalises inverse resolution. In
effect, this amounts to asking the question: ‘given the observed clauses [logic
programs] in the data, what two clauses could have been resolved together
to give this observation?’ The absorption and identification inductive rules
of inference are obtained in this way:

Absorption: q ← A p← A,B
q ← A p← q, B

Identification: p← A,B p← A, q
q ← B p← A, q

The absorption rule can be read as: ‘Given that I observe q ← A and
p ← A,B, one hypothesis I can make is that this is because q ← A and

11

p← q, B are true, and have been resolved to produce the observations. By
interpreting this hypothesis as a logic program, the feasibility of it being true
can be checked against the data. The identification rule is read similarly.

Two more induction rules are derived from inverting 2 resolution steps:

Intra-Construction: p← A,B p← A, C
q ← B p← A, q q ← C

Inter-Construction: p← A,B q ← A,C
p← r,B r ← A q ← r, C

With intra-construction, the hypothesis produced states that clauses
q ← B and p ← A, q are true and were resolved to give the observed
p ← A,B and clauses p ← A, q and q ← C were resolved to give the
observed p ← A,C. A new predicate symbol, q, has been introduced and
likewise the predicate r is introduced in the inter-construction rule. This
phenomenon is called predicate invention and is often necessary to enable
ILP programs to learn the correct definition for a concept. For example,
when constructing a logic program for ‘insertion sort’, intra-construction is
required to introduce an ‘insert’ predicate [24].

5 The Application of Inductive
Logic Programming

We look now at applying inductive logic programming — in particular the
Progol program — to the applications of scientific discovery, creative prob-
lem solving and puzzle generation. We ignore the application to concept
induction, as this is the main functionality of Progol — Progol has proved
itself on many occasions to be highly effective at inducing concept defini-
tions.

To our knowledge, Progol has not actually been applied to the last two
applications, so we must speculate on how this could be achieved. The
nature of our speculation, however, is in terms of the main functionality
of ILP: to induce a definition given positive and negative examples. That
is, we speculate about Progol’s use only as a program able to learn a def-
inition given a set of positive and negative examples of the concept to be
learned. We acknowledge that Progol is certainly able to perform more
tasks than this alone, but we are more interested in comparing automated
theory formation with automated concept induction.

5.1 Scientific Discovery

In general, Progol has also been used to perform scientific discovery tasks
by identifying a definition for a concept for which the categorisation of the
examples into positives and negatives was already known. For instance,
when applied to data from experiments involving the inhibition of E. Coli
Dihydrofolate Reductase [17], the positive examples of the concept were
pairs of drugs d1 and d2, where d1 was known to be more effective at the
inhibition task than d2. The task was then to learn a definition for this con-
cept, in effect to find a rule describing why d2 was less effective. Within the
rule derived for the concept, there may be new concepts, but the emphasis
is on finding a definition for a known concept. Progol has, however, been
responsible for finding an entirely new concept later found to be interesting,
as discussed in [15].

12

5.2 Creative Problem Solving

We have not applied Progol to this type of problem, so we can only speculate
on how to do this. As discussed above, our speculation in based on the
functionality of Progol to learn a single concept, ignoring any clustering
abilities it has. The problem here is not to learn a definition for a given
concept, but rather to learn a property of a given concept. In machine
learning terminology, the given concept can be thought of as a cluster, and
this problem is to find a larger cluster containing the given one. With HR,
we chose to do this by finding new concepts which were generalisations of
the given concept. One way to do this with Progol would be to include
some negative examples along with the positive examples and attempt to
learn a definition for this concept, which would be a generalisation of the
one given. Deciding which negative examples to include would possibly be
problematic and systematically choosing them may be too time consuming.

5.3 Puzzle Generation

As with creative problem solving, we can only speculate on the use of Progol
for this application. The learning task we set HR was to produce a set of
specialisation concepts which had good coverage of the simple concepts in
a domain, so that rival solutions can be checked. One approach to using
Progol for this would be to supply it with many different binary categori-
sations of the pgrams. It would then learn definitions for many concepts,
keeping those which are below some pre-defined complexity limit. However,
there are far too many ways to categorise the 81 pgrams, so either some
selection of the categorisations would be required, or a smaller number of
pgrams could be used. For example, there are around 10,000 different ways
to categorise 14 pgrams into positive and negative examples, and it may be
possible to learn definitions for this set.

Perhaps a more feasible alternative use of Progol for this task would
be the following. Firstly, choose 4 pgrams from the set of 81 and choose
one of these to be a negative example, with the other three being positive
examples. Then attempt to learn a concept with this categorisation of the
examples and record the complexity of any definition produced. If this is
achieved, a legal puzzle will have been generated and it will be necessary
to check for rival solutions. One way to do this would be to re-categorise
the four examples, choosing a new negative example and attempt to find
a new definition. If only definitions with much larger complexity than the
first one could be found, to a certain extent, the puzzle has no other odd
one out. This approach appears to be as plausible as our approach with
HR, although we need to experiment to check this. A problem with this
approach might be the small number of examples: only three positive and
four negative examples. With such a small number of examples, Progol may
not be able to learn a definition which achieves any compression (although
Progol is able to learn concepts from positive data only). Also, we may find
that a random choice of 4 out of 81 pgrams rarely leads to a set for which
there is a simply defined odd one out.

13

6 A Comparison of HR and Progol

6.1 Concept Formation

There is a striking similarity between the concepts Progol and HR can form.
We highlight this using examples from number theory. Firstly, in Progol,
concepts are formed which have definitions with conjunctions of predicates
and the predicates may have variables repeated within them and between
them. This produces concepts that HR can form with its compose, match
and exists production rules. For example, given the background concepts of
integers and multiplication, HR produces this definition for square numbers:

[n] : ∃ a (a× a = n)

and Progol produces this definition:

square(A) :- multiply(A,B,B).

Secondly, in Progol, the user can set mode declarations describing where
background predicates can appear in the invented predicates. Mode dec-
larations also specify whether variables become instantiated and whether
negation of predicates is allowed. The ability to instantiate variables cor-
responds exactly with HR’s split production rule, and the ability to negate
predicates corresponds with the negate rule. Also, a combination of negated
and existentially quantified predicates corresponds to concepts produced by
HR’s forall production rule. For example, HR defines even numbers as:

[n] : 2|n
Similarly, given the background predicate of divisors and allowed to instan-
tiate variables, Progol produces this definition:

even(N) :- divisor(N,2).

Finally, we found that if we supply two additional predicates as back-
ground knowledge from set theory, namely the standard Prolog predicates
of setof and length, Progol can cover concepts produced by the size pro-
duction rule. For example, HR defines the τ function (number of divisors
of an integer) in this way:

[n, t] : t = |{a : a|n}|
and Progol produces this equivalent definition:

tau(N,T) :- setof(M,divisor(N,M),L),
length(L,T).

Therefore, for each of HR’s production rules, Progol can produce con-
cepts of a similar nature. Interestingly, covering all HR’s production rules
requires three different aspects of Progol’s functionality, with one of HR’s
production rule (the size rule) commonly given as additional background
knowledge in Progol. Progol’s hypothesis is a superset of HR’s, but as we
implement more production rules, this situation will change. In particular,
Progol can define concepts recursively by specifying a base case and a step
case. HR cannot yet produce such concepts, although we plan to implement
a ‘path’ production rule to enable this.

14

6.2 Applications

While HR and Progol can form similar concepts, they differ in how they can
be applied to each problem. When learning definitions for concepts, Progol
generates possible answers, then builds new answers from the ones which
achieve most compression first. On the other hand, for this application, HR
does not use the given concept to direct the search, except when the answer
has effectively been found and the lookahead mechanism enables it to take
a shortcut to it. Without tweaking Progol, it appears that if there are few
positive examples of a concept, Progol will not consider complicated defini-
tions for them, as this achieves no compression. This may be a drawback
for learning mathematical concepts, where the definitions are often fairly
complicated, yet the examples scarce. In contrast, HR will carry on regard-
less of the complexity of concepts being formed, until an answer is found.
On the other hand, Inductive Logic Programming is a much more powerful
technique than HR’s lookahead mechanism, because this mechanism does
not drive the search until that search is nearly over.

HR’s application to scientific discovery was slightly different to Progol.
Progol was used to find possibly complicated definitions for scientific con-
cepts, given a categorisation into positive and negative examples. These
definitions were, in some cases, interpreted as rules and used to explain the
phenomenon differentiating the positive and negative examples. Progol has
had much success with this approach in many areas, in particular chemistry,
biology and medicine. HR’s approach to discovery was more exploratory,
because we used it to identify concepts new to us. We did not supply HR
with any information about the concepts we were hoping it would find (such
as a categorisation into positive and negatives), we only supplied the fun-
damental concepts in the domain. Because there are so many concepts in
a domain, HR had to identify which were interesting during its search so
that it could use a heuristic search to reach more interesting concepts. More
than this, after HR had found a concept which was missing from the Ency-
clopedia of Integer Sequences, it mined the Encyclopedia to find interesting
conjectures to add further interest to the concept. In contrast, for Progol,
there was no need to find reasons why the definitions were interesting, be-
cause the fact that one had been found to explain the observed phenomenon
was interesting in itself (in fact, the whole point of the exercise was to find
such a definition).

It is more difficult to comment on the problem solving and puzzle gener-
ation applications, because we have yet to study how Progol would be best
applied to these problems. We have mainly suggested how Progol could be
used in terms of applying its definition induction techniques to the prob-
lem at hand and we have not looked at any clustering ability Progol may
have, which may be a more suitable approach. Problem solving of the na-
ture we’ve applied HR to in §3.3 may be problematic for Progol, because it
involves finding a definition not for the concept supplied, but for a gener-
alisation of that concept. We have suggested a macro use of Progol, where
negative examples are changed to positives and a definition sought, which
would produce a generalisation. However, this may turn out to be compu-
tationally expensive because there are many choices for the positives and
negatives. Similarly with puzzle generation, we suggested that Progol could
learn definitions for given sets of examples, then show that no rival solution
occurs.

For both the problem solving and puzzle generation applications, we
have used HR to find a concept first, with the examples found afterwards.

15

In contrast, our suggested use of Progol is to find the examples first, then
find a definition which fits them. Until we perform more experiments with
Progol, we cannot determine which approach is better for the two problems.
However, in the case of puzzle generation, it is unlikely that a human writing
a puzzle would start by writing down four examples, then try to find a
concept embedded within them. However, we may find that a constraint
based approach is more effective for puzzle generation.

7 Conclusions and Future Work

By highlighting some commonalities between the four applications described
above, we can draw some conclusions about the application of automated
theory formation in general.

Our first observation is that with all four applications, part of the goal
is to learn a concept which has certain properties. This is clear with the
application to inducing a definition from examples, where the goal is to find
a concept which achieves a given categorisation of the examples supplied.
With scientific discovery — in the way that HR performs it — the goal is to
find a concept for which even the categorisation is not known. The concept
must have the property of being interesting. With the application to creative
problem solving, the aim is to find a concept which is a generalisation of the
given concept. With the application to puzzle generation, the aim is to find
a concept for which examples can be found for a puzzle, for which there is
no simple rival solution. To check that there are no rivals, HR also needs
to generate a large set of concepts from which a rival might be found.

Hence we can conclude that three main applications of theory formation
are (i) to find something about a given concept (i.e. a definition, or a
property), (ii) to find an entirely new concept with a particular property and
(iii) to find a set of concepts which cover all definitions of a particular form.
With the exception of the generation of novel integer sequences, concept
formation has been the main aspect of theory formation required for the
problem. However, in future, we also hope to apply the conjecture making
aspects of theory formation to areas of Artificial Intelligence, in particular
constraint satisfaction problems and automated theorem proving.

The role of the user differs between each task. The user takes no part
in the puzzle generation or the application to induction of definitions (other
than supplying the positive and negative examples and perhaps making
some adjustments to the settings). However, in the application to creative
problem solving, the user must interpret the property HR suggests and de-
termine whether or not it provides insight to the problem at hand. Similarly,
with the discovery of integer sequences, the user must interpret the relations
HR finds as conjectures and attempt to prove or disprove them. In this case,
the user also has to choose one of HR’s new sequences to investigate.

For each application, HR performed a different search for concepts.
Also, each application required an additional module to complete the task
after theory formation. For the induction of definitions, a unary-first search
was used and we implemented the lookahead mechanism. For the scientific
discovery application, a heuristic search, based on the novelty heuristic (see
[6]) was employed and the ability to data mine the Encyclopedia of Inte-
ger Sequences was added. For the problem solving application, a different
heuristic search was used and the ability to notice generalisations of the
given concept was added. For the puzzle generation, an exhaustive breadth
first search was employed and the abilities to choose examples for the puzzle

16

and check for rival solutions were implemented. Hence, while theory for-
mation can provide the initial information for an application and varying
the search should improve performance, further processing is required to
complete the task.

Progol is generally used to induce a definition from a set of positive
and negative examples, e.g. a definition for a subset of trains which are
eastbound which distinguishes them from the westbound trains. This is
a reactive process — a concept is immediately sought which defines the
examples. It is possible to imagine another scenario, as discussed in [3]
whereby the program is given the same set of 10 trains and predicates
describing them, but is allowed, say an hour, to prepare for an East-West
question of the above nature. One effective way for a program to spend its
time would be to invent many concepts related to trains, in particular, ways
of classifying trains into a positive and a negative class. This is a more pro-
active machine learning task, where the emphasis is on studying the trains
rather than trying to learn a particular feature of them. We gave the task to
study trains to HR, and in one hour it produced 160 specialisation concepts.
There are only 638 ways to split 10 objects into two classes,1 so if the user
chose any subset of trains at random, there would be a one in four chance
that HR could supply a reason why those trains were eastbound (and the
others were not). We have performed similar pro-active learning tasks in
number theory, using an agency of theory formation programs [7].

We have shown that theory formation can be applied to different learn-
ing tasks and have highlighted the task involved, the additional functionality
implemented in HR, and the role of the user. While we make no claims that
theory formation is the best way to approach these problems, we hope to
have shown that it can be a useful tool for tasks involving learning. We have
also compared HR to Progol both in terms of the concepts they form and
their application (or proposed application) to the problems described. We
have shown that Progol covers all the concepts that HR can form, but, even
though HR was developed specifically in mathematical domains, only one
of its production rules corresponds to additional background information in
Progol. We have also suggested that for tasks such as puzzle generation —
where it is necessary to find a set of concepts rather than just one — and
problem solving — where it is necessary to find a concept for which the cat-
egorisation is not known — theory formation may be more applicable than
the definition-inducing functionality in Progol. However, we have not tested
Progol in these areas and we do not comment on whether Progol could be
employed to generate puzzles or solve problems of the type discussed above.

There are many more applications we envisage for automated theory
formation and HR. In particular, we have recently applied HR to the gen-
eration of implied and induced constraints for constraint satisfaction prob-
lems. Each conjecture, theorem and concept HR makes can, in principal,
be turned into a new constraint for the CSP. In particular, we have used the
Choco constraint programming language to generate quasigroups using the-
orems found by HR as additional constraints, and using concepts invented
by HR to specialise the search [11], [12]. For many classes of quasigroups,
the additional constraints enabled Choco to find larger solutions, and in all
cases, the constraints improved the efficiency of the search.

We also hope to apply HR to automated theorem proving, whereby the
user supplies a conjecture and requires a proof. We intend to test whether
some initial theory formation before a proof attempt can decrease the time

1See sequence A027306 in the Encyclopedia of Integer Sequences [29].

17

taken to prove a theorem. The theory produced would supply lemmas about
the concepts in the conjecture statement which could be useful for the proof.
As with CSPs, it will be necessary for HR to determine whether or not a
lemma would be useful for a particular theorem. By applying HR to different
problems, we hope to show that exploratory theory formation of the kind
performed by HR implements an important intelligent activity which has
many uses in Artificial Intelligence.

Acknowledgments

I would like to thank Alan Bundy and Toby Walsh for continued detailed in-
put to the HR project. I would also like to thank Stephen Muggleton, Chris
Bryant and Richard Greaves for their in-depth discussions about Progol, HR
and chemistry. Thanks also to Herbert Simon for enthusiastic discussions
about the prospects for automated puzzle generation and problem solving.
This work is supported by EPSRC grant GR/M98012, and the author is also
affiliated with the Department of Computer Science, University of York.

References

[1] G Caporossi and P Hansen. Finding relations in polynomial time. In
Proceedings of the 16th International Joint Conference on Artificial
Intelligence, pages 780–785, 1999.

[2] S Colton. Refactorable numbers - a machine invention. Journal of
Integer Sequences, www.research.att.com/~njas/sequences/JIS, 2,
1999.

[3] S Colton. Assessing exploratory theory formation programs. In Pro-
ceedings of the AAAI-2000 workshop on new research directions in ma-
chine learning, 2000.

[4] S Colton. Automated plugging and chugging. In M Kerber and
M Kohlhase, editors, Computation and Automated Reasoning, pages
247–248. A. K. Peters, 2000.

[5] S Colton. Automated Theory Formation in Pure Mathematics. PhD
thesis, Division of Informatics, University of Edinburgh, 2001.

[6] S Colton, A Bundy, and T Walsh. HR: Automatic concept formation
in pure mathematics. In Proceedings of the 16th International Joint
Conference on Artificial Intelligence, pages 786–791, 1999.

[7] S Colton, A Bundy, and T Walsh. Agent based cooperative theory for-
mation in pure mathematics. In Proceedings of the AISB’00 Symposium
on Creative & Cultural Aspects and Applications of AI & Cognitive Sci-
ence, pages 10–18, 2000.

[8] S Colton, A Bundy, and T Walsh. Automatic identification of mathe-
matical concepts. In Machine Learning: Proceedings of the 17th Inter-
national Conference, pages 183–190, 2000.

[9] S Colton, A Bundy, and T Walsh. Automatic invention of integer
sequences. In Proceedings of the Seventeenth National Conference on
Artificial Intelligence, pages 558–563, 2000.

18

[10] S Colton, A Bundy, and T Walsh. On the notion of interestingness in
automated mathematical discovery. International Journal of Human
Computer Studies, 53(3):351–375, 2000.

[11] S Colton and I Miguel. Automatic generation of implied and
induced constraints. Technical Report APES-32-2001, APES
Research Group, 2001. Available from http://www.dcs.st-
and.ac.uk/˜apes/apesreports.html.

[12] S Colton and I Miguel. Constraint generation via automated theory
formation. In Proceedings of the 7th International Conference on the
Principles and Practice of Constraint Programming, pages 572–576,
2001.

[13] S Epstein. On the discovery of mathematical theorems. In Proceed-
ings of the 10th International Joint Conference on Artificial Intellignce,
pages 194–197, 1987.

[14] S Fajtlowicz. On conjectures of Graffiti. Discrete Mathematics 72,
23:113–118, 1988.

[15] P Finn, S Muggleton, D Page, and A Srinivasan. Pharmacophore dis-
covery using the inductive logic programming system Progol. Machine
Learning, 30:241–271, 1998.

[16] S Jain, D Osherson, J Royer, and A Sharma. Systems that Learn. MIT
Press, 1999.

[17] R King, S Muggleton, and M Sternberg. Drug design by machine learn-
ing: The use of inductive logic programming to model the structure-
activity relationships of trimethoprim analogues binding to dihydro-
folate reductase. Proceedings of the National Academy of Sciences,
89(23):11322–11326, 1992.

[18] D Lenat. AM: Discovery in mathematics as heuristic search. In D Lenat
and R Davis, editors, Knowledge-Based Systems in Artificial Intelli-
gence. McGraw-Hill Advanced Computer Science Series, 1982.

[19] W McCune. The OTTER user’s guide. Technical Report ANL/90/9,
Argonne National Laboratories, 1990.

[20] W McCune. A Davis-Putnam program and its application to finite first-
order model search. Technical Report ANL/MCS-TM-194, Argonne
National Laboratories, 1994.

[21] R Michalski and J Larson. Inductive inference of VL decision rules.
In Proceedings of the Workshop in Pattern-Directed Inference Systems
(Published in SIGART Newsletter ACM, No. 63), pages 38–44, 1977.

[22] S Muggleton. Inductive Logic Programming. New Generation Com-
puting, 8(4):295–318, 1991.

[23] S Muggleton. Inverse entailment and Progol. New Generation Com-
puting, 13:245–286, 1995.

[24] S Muggleton and L De Raedt. Inductive Logic Programming: Theory
and methods. Logic Programming, 19-20(2):629–679, 1994.

[25] S Muggleton and D Page. A learnability model for universal repre-
sentations. Technical Report PRG-TR-3-94, Computing Laboratory,
University of Oxford, 1994.

19

[26] D Ripley. Pattern Recognition and Neural Networks. Cambridge Uni-
versity Press, 1996.

[27] J Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, 1965.

[28] H Simon and A Newell. Heuristic problem solving: The next advance
in operations research. Operations Research, 6(1):1–10, 1958.

[29] N Sloane. The Online Encyclopedia of Integer Sequences.
http://www.research.att.com/~njas /sequences, 2000.

[30] R Valdés-Pérez. Machine discovery in chemistry: New results. Artificial
Intelligence, 74:191–201, 1995.

[31] S Wolfram. The Mathematica Book, Fourth Edition. Wolfram Me-
dia/Cambridge University Press, 1999.

[32] P Zeitz. The Art and Craft of Problem Solving. John Wiley and Sons,
1999.

