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Unsupervised Modelling of Player Style with LDA
Jeremy Gow, Robin Baumgarten, Paul Cairns, Simon Colton and Paul Miller

Abstract—Computational analysis of player style has signifi-
cant potential for video game design: it can provide insights into
player behaviour, as well as the means to dynamically adapt a
game to each individual’s style of play. To realise this potential,
computational methods need to go beyond considerations of
challenge and ability and account for aesthetic aspects of player
style. We describe here a semi-automatic unsupervised learning
approach to modelling player style using multi-class Linear
Discriminant Analysis (LDA). We argue that this approach is
widely applicable for modelling player style in a wide range
of games, including commercial applications, and illustrate it
with two case studies: the first for a novel arcade game called
Snakeotron, the second for Rogue Trooper, a modern commercial
third-person shooter video game.

Index Terms—Video games, player style, player types, log
analysis, LDA, k-means clustering, adaptive games.

I. INTRODUCTION

UNDERSTANDING player style is an essential part of
video game design. In all but the simplest of games,

there is potential for players to find different ways to play.
These styles can be an expression of many factors, such as
strategy, ability, mood, taste, experience, personality or culture.
Knowledge about player style can be critical in developing
and refining a game design, particularly if it is based on
observations of real players of the game in question [1], [2].
With this knowledge, designers are free to embrace a range of
styles, or reject some and focus on specific groups of players.

Computational methods have a central role to play in
making this knowledge available to designers. Many game
companies, from console to independent developers, are now
collecting quantitative play data on an unprecedented scale,
during playtesting and after release via game telemetry. There
are many opportunities here for Artificial Intelligence research
to contribute to game design, including the modelling of player
style, classification of style according to existing models, and
adaptation to individual styles.

Because challenge and ability are central to video games,
there is a temptation for computational approaches to reduce
style to task performance, and adaptation to “dynamic diffi-
culty adjustment”. While these approaches are valid, they are
only part of a picture of style which includes less tangible fac-
tors such as taste, experience and culture. In general, machine
analysis of player style is, in part, a form of computational
aesthetics. Methods need to account for variations based on
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the sensory and emotional values of players and adapt in ways
that are sensitive to the aesthetics of game design.

In this paper we describe the use of Linear Discriminant
Analysis (LDA) [3] for unsupervised generation from log data
of traits describing player style, and discuss its potential for
informing design. An individual player is represented by a
group of automatically extracted segments of log data, to
which a number of feature metrics are applied. The resulting
high-dimensional space is then reduced using LDA to a
low-dimensional representation which maximises separation
between log extracts from different players and minimises sep-
aration between extracts from the same player. The dimensions
(discriminant functions) of this LDA space are interpreted as
traits which can give insights into player style, and can support
further computational analysis, e.g. clustering of players into
types.

LDA is a supervised method — we employ individual
players as class labels for log data extracts — but here we are
using it to generate a player model in an unsupervised fashion,
i.e. no explicit information is supplied about player style. We
propose that, compared to applicable unsupervised techniques
(e.g. PCA [4], self-organising maps [5]), one advantage of
using LDA in this context is that it emphasises differences
between players, and is less influenced by other sources of
regularities, e.g. differences between distinct combat scenarios.
As an approach which does not make use of existing models
or classifications, we claim it is well suited to studying the
aesthetic aspects of player style, which might be difficult to
anticipate for specific games, even in established genres.

We explore the use of LDA in studies with two games. To
introduce our approach we describe an analysis of Snakeotron,
a novel arcade-style game (Section III). The generated player
style model distinguishes input rate, wall avoidance, steering
style and risk. In the second study, we look at more complex
gameplay in Rogue Trooper, a modern commercial third-
person shooter video game (Section IV). Our method identifies
combat dynamism, cautiousness and ammunition management
as three player style traits. We compare these result to some
external player metrics, contrast with PCA, and build on
the model to generate a player style typology with k-means
clustering. The feature data and scripts used in our LDA and
cluster analyses are publicly available1.

II. BACKGROUND

Research on models of video game players is often traced
back to Bartle’s work on Multi-User Dungeons [6], which later
became known as the “Achiever, Explorer, Socializer, Killer”
typology. A series of player typologies followed, inspired by
both video game theory and empirical studies, e.g. Bateman &

1http://ccg.doc.ic.ac.uk/data/
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Boon’s “Conqueror, Manager, Wanderer, Participant” [2]. This
research is intimately connected to the culture of game de-
sign, which is continually developing its own design-oriented
theories, e.g. hardcore versus casual gamers. Recent work by
Bateman et al. [7] gives a good overview of the area and argues
that, as the field matures, it is following a general trend in the
psychology of personality, where type-based theories are being
superseded by more nuanced trait-based theories.

A. Gameplay-Based Player Models

Player models vary considerably in their nature and
application. Smith et al. [8] provide a taxonomy of
player models in terms of four facets: scope (individual-
class-universal-hypothetical), purpose (generative-descriptive),
domain (action-reaction) and source (induced-interpreted-
analytic-synthetic). In this paper, we focus on relating descrip-
tions of players to in-game actions. Yannakakis & Togelius
refer to this as gameplay-based player experience modelling
[9], and note differences in how players are described. We dis-
tinguish here between gameplay-based models of behaviour,
personality and experience, although in practice the distinction
may not be clear cut.

1) Behavioural models: These simply describe players in
terms of their in-game activity. For example, Drachen et
al. [10] applied emergent self-organising maps (ESOMs) to
game data from Tomb Raider: Underworld to create a player
typology. The study is notable for its scale and use of natural
data: 1365 complete playthroughs of the game on XBox
LIVE were collected remotely via the EIDOS metrics suite.
Only six features were logged: completion time, use of help-
on-demand, total deaths, and deaths caused by opponents,
the environment and falling. Their ESOM analysis suggested
four types of Tomb Raider player, named Veterans, Solvers,
Pacifists and Runners.

More detailed records of in-game activity can also be
used to build behavioural models. In an earlier study of
LDA, Baumgarten conducted a study of 245 Pac-Man players,
recording every player and ghost movement made during the
game. Applying LDA to log data features showed the most
distinguishing features were related to key press frequency,
understanding of the game rules, and optimising play for
high scores [11]. Thawonmas et al. used similarly detailed
movement logs to cluster players based on the locations visited
within a game [12]. In general, behavioural models can be
used to reason about player experience, although this depends
on an interpretation (which may be empirically-based) which
maps patterns of behaviour to patterns of experience. Although
generating behavioural models directly from data also has
the potential to reveal significant patterns that have not been
captured in any pre-existing conceptualisation of experience
— an approach we explore in this paper.

2) Personality models: In contrast, some approaches use
in-game activity to describe players in terms of some pre-
existing general theory of player personality (a model-based
approach [9]). The theory should make claims beyond the
game being studied, but also be valid and relevant within
that specific gaming context. Data on player personality is

required to construct and/or evaluate the model. Reasoning
about player experience requires some interpretation of how
player personality affects player experience. For example, in a
study of Pac-Man players, Cowley [13] used decision trees to
classify Bateman and Boon’s ‘Conqueror type’ players from
log data, based on a typology which itself was inspired by the
Myers Briggs Type Indicator. Lankveld et al. [14] looked at
how game log data from players of Neverwinter Nights could
be used to estimate players’ personalities within the influential
trait-based OCEAN model. Similarly, Yee and colleagues were
able to estimate players’ OCEAN profiles from detailed online
statistics about their World of Warcraft gameplay [15].

3) Experience models: A third approach to gameplay-based
player models is to directly relate specific player experiences
to in-game activity without a mediating model (a model-free
approach [9]). In this case, some predefined conceptualisation
of experience is required which may be inferred from log data.
As with personality models, this approach requires external
data on player experience. For example, applying an artificial
neural network to game log data, Pedersen et al. [16] directly
modelled the player experiences of fun, challenge and frustra-
tion in a clone of Super Mario Bros, as reported by players via
pairwise comparison. In contrast to behavioural or personality
models, no further interpretation is required to reason about
player experience.

B. Adaptive Games

In this paper we look at constructing descriptions of player
style from data, and one possible application of this is adapting
games to player style. Indeed, any form of adaptation implies
a gameplay-based player model, even if it is not made explicit,
and so we briefly survey the area here. Relating player style
and in-game actions can support the development of adaptive
games.

Various simple forms of adaptation have appeared in games
for decades, but over the last few years there has been
increased interest within academia. Thue et al. used choices in
an interactive story to model players according to a typology
of narrative-based styles of play: Fighters, Power Gamers,
Tacticians, Storytellers and Method Actors. The model is then
used to dynamically select content as the story develops.

Yannakakis and colleagues have been particularly active in
the area of adaptive games. For example, in [17] an artificial
neural network was applied to survey and log data to generate
a model of player enjoyment of an augmented reality game for
children. This was then used to adapt the game during play.

Beyond variation within a game, some authors have looked
at automatically creating novel game content tailored to play-
ers. For instance, building on the player model developed in
[16], Shaker et al. automatically generate platform game levels
[18]. Hastings et al. log weapon use, and employ the data
to dynamically evolve novel particle system-based weapons
adapted to the player [19].

Live adaptation in commercial games typically performs dif-
ficulty scaling, but recently more diverse adaptive mechanisms
have appeared. Here we mention three recent examples:
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1) Left 4 Dead and Left 4 Dead 2 (Valve Corporation):
These are examples of adaptation by dynamically changing
opponent appearance frequency. Depending on the accuracy,
health and rate of progress of a players’ party, groups of
enemies (several types of zombies) appear in more or less
dense clusters, boss enemies are triggered. Left 4 Dead 2 also
modifies terrain features in certain levels, such as the path
through a graveyard, according to similar player and party
metrics.

2) Darkspore (Electronic Arts/Maxis Software): A so-
called ‘AI Director’ is used to adjust game features such
as level selection, spawn types, spawn placement, spawn
amount, enemy health and damage, and music [20]. These
features were adjusted according to the rate of progress and
performance of the player.

3) Silent Hill (Konami/Climax Studios): Psychological pro-
filing of the player is integrated into the game [21]. The
main antagonist is a psychologist ‘testing’ the player, and the
designers took inspiration from the psychological literature to
adjust aspects of the game, based on the player profile.

These and other examples indicate that there is growing
interest in player modelling and adaptive games within in-
dustry, and that companies are experimenting with a more
personalised gaming experience.

C. Linear Discriminant Analysis
Linear Discriminant Analysis (LDA) is a statistical data

mining technique that distinguishes between c classes of ob-
jects in an N -dimensional feature space by computing a series
of k ≤ (N − 1) linear discriminants — linear combinations
of features which represent directions in the feature space —
whose values can be used to characterise the classes [3]. LDA
is similar to Principal Components Analysis (PCA) [4] in that
it selects directions which maximise feature variance, and so
describe the “most important” variations in the data. Unlike
PCA, in LDA the class labels are also used: it finds directions
which best separates the class means relative to the sum of
the class variances along that direction. It maximises the ratio
of between-class scatter to within-class scatter. Intuitively, it
finds lower dimensional descriptions of the data which push
the class members together, and pulls members of different
classes apart.

Formally, we have a set of c classes C1, . . . , Cc, where class
Ci is represented by a sample of ni objects (N -dimensional
feature vectors). Denoting the sample mean for class Ci by µi

and the total sample mean by µ, we define the between-class
and within-class scatter matrices SB and SW as:

SB =

c∑
i=1

ni(µi − µ)(µi − µ)T

SW =

c∑
i=1

∑
x∈Ci

(x− µi)(x− µi)
T

LDA attempts to find a matrix A which maximises the
following objective function

det(ATSBA)

det(ATSWA)

The column vectors of A correspond to the required N − 1
linear discriminants. In practice, these can be computed by
finding solutions to the following generalised eigenvalue prob-
lem using standard methods:

(SB − λSW )x = 0

The k linear discriminants correspond to the k ≤ (N − 1)
eigenvectors ordered by eigenvalue. The discriminants can be
used to classify new objects or, as in this paper, for dimension
reduction, where the first k′ ≤ k discriminants are used to
project the data to a reduced k′-dimensional space which can
describe important variations between classes. In this paper,
we use the R package MASS [22] to compute discriminants.

The design of LDA makes two assumptions to guarantee
the optimality of discrimnants: 1) multivariate normality, that
any linear combination of features is normally distributed;
2) homoscedasticity, that the classes have equal covariance
matrices. Despite the risk of suboptimal results, LDA has
been widely used for classification and dimension reduction in
contexts where these assumptions are violated. The effects of
non-normality e.g. [23], [24] and unequal covariance matrices
e.g. [25] are complex and have been widely studied. Ashikaga
& Chang [26] argue that similarity in the shape of class
distributions is more important than normality. It is beyond
the scope of this paper to survey this complex area, except to
note that 1) it is generally accepted that small deviations are
not problematic, and 2) more serious deviations should make
the researcher cautious in interpreting and applying results, and
the results should be checked with other research methods.

In this paper, we use LDA to generate hypotheses about
player style, and advocate the use of LDA in conjunction with
other game design methods to ensure validity.

III. STUDY 1: SNAKEOTRON

Arcade-style action games are suitable candidates for study-
ing player style because of limited input dimensions, a limited
state space, and ease of modification for data collection. To
investigate learning about player style from gameplay data,
we have created a new arcade-style action game inspired by
existing arcade games such as Snake and Tron. These games
are similar in that the player-controlled character draws a trail
behind him that he is not allowed to cross, and ideas from both
are incorporated into Snakeotron. It has a pool of game rules
that can be added to or substituted to form a customisable
game.

Here we look at whether LDA be used to identify important
variations in player style in Snakeotron. We use LDA to anal-
yse player data from an internet-based study with Snakeotron
using pre-defined sets of rules. We also compare the results to
an earlier survey where participants played Pac-Man.

In future work, we intend to adapt the game rules to different
player styles. The ultimate goal is to create an adaptive
Snakeotron that automatically selects a subset of game rules
deemed optimal for the current player’s style of play. A simple
arcade game was chosen partly because the rules are relatively
easy to modify while retaining playability.

Snakeotron is a 2D arcade action game where the goal
is to collect all the green balls on the screen. Players can
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Fig. 1. A screenshot of Snakeotron with the player character (green line,
bottom left), AI controlled opponent characters (red lines), collectable targets
(green balls and orange square), and obstacles (red balls and grey walls).
The goal of the game is to collect all green balls without losing by touching
obstacles or opponents.

collect power-ups to alter the behaviour of their character,
and should avoid hitting any other obstacles such as other
computer controlled snakes, red balls and walls. An average
match (i.e., a single play-through where the player collects all
the green balls within a given rule set, or uses up all their
lives trying to do so) lasts 30–90 seconds, depending on the
given subset of rules, which are described below. The game
has been implemented in Processing, connected to a MySQL
database for data capture2. A screenshot of a typical game
scene is shown in Figure 1.

A. Pilot Study

We conducted a pilot study with Snakeotron, involving nine
participants, in order to establish basic parameters for the main
studies. Feedback from the pilot study participants led us to
tweak some parameters, in particular we shortened the overall
survey duration to 8 minutes and the individual match duration
to 30–90 seconds, clarified the post-match questionnaire, and
improved the introductory help screen. A neutral option for a
comparative question in the questionnaire (see also subsection
III-B) was requested, however, after careful deliberation, we
decided not to provide a neutral option in order to force a
decision. We argue that the results would even out when a
large part of the users were undecided over a choice of games.

B. Data Capture

Snakeotron was set up to capture all player actions, so that a
full replay of the match was possible. Additionally, cumulative

2Available at http://aipanic.com/game2/index no fb.html (March 2012)

metrics were recorded to simplify data analysis. The selection
of these metrics is related to metrics that have been established
in previous surveys [11], [27] to allow for comparable clas-
sification. An internet-based study was conducted to measure
player participation, engagement and behaviour. To facilitate
this, a website was set up to introduce the participant to the
game and explain the survey structure. Each player was asked
to play a sequence of games, i.e., matches of Snakeotron with
a subset of game rules. The chosen subset of game rules is
different for each match for a given player, but the same for
different players. In other words, the nth match in the sequence
that any participant plays always has the same set of rules, but
no match in the sequence has the same set of rules.

Each participant was asked to play at least 10 matches in at
most 7 minutes. These values were established experimentally
in the pilot study mentioned in subsection III-A. After each
match, the player was asked to evaluate their enjoyment with
two questions:
• How much fun did you have? Rated from ‘very little’

to ‘a lot’ in 6 steps. This question attempts to glean an
absolute view on the enjoyment the player experiences.

• Which of these two previous games did you enjoy more?
Given with a screenshot of the last two matches and a
choice of ‘a little more fun’ ‘more fun’ and ‘a lot more
fun’ for both matches (i.e., 6 choices), the player is asked
to quantify his enjoyment in a relative manner.

When the end of the survey was reached, the player was
given the option to keep on playing in order to provide
more data points. All information the player provided was
anonymised and remotely stored in a MySQL database.

The game survey involved 215 unique players with 1450
matches. After completion of the survey, we selected a subset
of players according to minimum requirements: 1) Three or
more complete matches were played; 2) Match duration of 10
seconds or more. Less time than this indicates deliberate losing
or no input, i.e., the character only goes straight ahead and
loses; 3) No missing data due to connectivity issues or closed
sessions. This resulted in 74 complete data sets of players with
3 or more matches each.

C. Log Features
From the recorded survey game data, we computed 16 log

features that summarise each match. The metrics cover all
aspects of the game, and were collected during each match
and transmitted to database:

1) Total time: The total time of the match in seconds.
2) Score: The accumulated score, as a sum of points

awarded / subtracted for game events.
3) Distance: Total distance travelled during the match.
4) Walls hit: The number of turns where a static grey wall

has been hit.
5) Opponent hit: The number of turns where a red opponent

tail has been hit.
6) Owntail hit: The number of turns where the player hit

his own green tail.
7) Other hit: The number of turns where another obstacle

has been hit. In the current version of the game, these
are only red balls.
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8) Turns cornering: The number of turns spent cornering
(i.e., where a the press of a direction key has led to a
change of course of the player character).

9) Low corner distance: The average distance to an obstacle
that a player would have hit if he had kept going in a
straight line, when he is turning. This is only counted
if that distance is lower than 1/10th of the game world
width, in our implementation, this is 50 pixels.

10) Low corner count: The number of turns where a low
corner distance is recorded.

11) Right corners: The number of turns the player spent
going in a right corner.

12) Left corners: The number of turns the player spent going
in a left corner.

13) Turns with useless keys: The number of turns the player
spent pressing a direction key that did not lead to a
change of direction of the player character. This happens
if the character is already travelling in the direction of
the direction key.

14) Keys pressed: The number of turns the player spent
pressing down a key. Repeat keystrokes that might hap-
pen from keeping the key pressed down for an extended
period of time are not counted.

15) Right turns minus left turns: A composite metric where
we subtract the number of left turns from the number
of right turns. The pilot study revealed that players tend
to prefer one direction over the other and go in a spiral
pattern. This feature was introduced to see if this would
be an important factor in player classification.

16) Score per distance: A composite metric that records the
score per travelled player distance.

Note that a (game) turn is an atomic time step in the game,
and that there are 30 turns per second.

D. Applying LDA
We applied LDA to the Snakeotron match data, labelling

each match with the identity of the player. Hence each player
has a distinct class of feature vectors describing their matches.
As covered in Section II-C, LDA uses a linear base transforma-
tion to minimise within class variance and maximise between-
class variance. In other words, we are attempting to highlight
stylistic commonalities between individual player’s matches
and differences between matches from different players.

To maintain comparability of the data vectors of each match,
the features were made time-independent by dividing each
value by the total match time. This allows easier comparison
of very short and more extended matches, which are bound
to happen with differing rule sets. The feature data collected
in the Snakeotron survey is not multivariate normal nor ho-
moscedastic. As discussed in II-C, the application of LDA
on this data can still provide useful results. All features were
found to have a roughly log-normal distribution.

In Figure 2, we present a plot of the first two dimensions
of the LDA-transformed space. The weights of the features
in the first dimensions of the LDA space indicate more
important features that determine the behaviour of a player
and how it differs from other players. One positive side-
effect of this method is that unimportant features are penalised

Fig. 2. Snakeotron: The first two LDA dimensions showing all matches of
all players (number and colour indicates player).

TABLE I
INFLUENTIAL COEFFICIENTS FOR LD1-4 IN SNAKEOTRON

LD Trace Positive coefficients Negative coefficients
1 0.18 Low corner dist (0.86) Turns with useless keys (-0.82)

Keys pressed (1.01) Low corner count (-0.69)
Score / distance (-0.52)

2 0.16 Walls hit (1.15) Score / distance (-0.52)
Score (0.55) Low corner dist (-0.51)
Keys pressed (0.55)

3 0.11 Turns with useless keys (-0.74)
Turns (-0.64)
Keys pressed (-0.56)
Walls hit (-0.54)
Score (-0.51)

4 0.08 Score (-1.1)
Opponents hit (-0.85)
Walls hit (-0.85)
Turns (-0.78)
Low corner count (-0.54)

automatically. Furthermore, it is not harmful if features are
correlated, which is likely to happen as we look at rates of
player actions such as turns per minute and keystrokes per
minute.

E. Interpretation

To understand what a discriminant represents, we look at
the linear coefficient for each feature. Table I shows the
most influential coefficients of the first four discriminants.
Interpretation depends on the relative values of the coefficients,
and here we report features over a 0.5 threshold.

The weights of the first dimension (LD1) are dominated
by the frequency of keys being pressed and frequency of
turns with useless keys. This means that the rate of physical
interaction with the computer is one of the most important
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factors to classify players. The number and average distance
of low corners also have a high weight in LD1. As described
in subsection III-C, low corners signifies events where an
obstacle is nearby and the player decides to turn. Summing up
and taking the sign of the weights into account, a high value
for LD1 indicates a player that likes to keep their distance
from obstacles (high low corner distance and not a lot of low
corners in total), which also leads to longer paths and a low
score per distance. To achieve this, the player corners a lot.

The second dimension LD2 is mostly determined by the
amount of walls hit. Hitting a lot of walls is the most
common way to lose the game (other ways to lose include
hitting computer controlled snakes or red balls), and thus is
an indicator of skill in Snakeotron. A high weight for low
cornering distance ties in with hitting walls, because if this
distance is low, the player is spending more time in close
proximity to walls. Other important weights for LD2 are score
per distance and – with an opposite sign – score per time. This
will separate players who travel a long distance to score highly
from those who achieve high scores in a short distance. As the
player is penalised for hitting walls, more wall impacts will
lead to a lower score per distance. Overall, a high value in
LD2 means that the player fails to avoid walls frequently, and
thus receives a lower score per distance.

A high value in LD3 indicates that the player did not do
much, i.e., not many normal or ineffective key presses, thus
not many turns, not many walls hit and a low score. All these
values are relative to the time played, which means that the
match was likely stretched out by careful yet sparse steering
commands.

A low value in the fourth dimension LD4 means a high
score, a lot of opponents and walls hit, and a lot of normal
and low distance turns. This indicates a successful yet risky
playing style, where the player accepts damage to reach the
goal (of collecting all the green balls).

Considering this, we can say that linear discriminant analy-
sis of the playing data for Snakeotron indicates that interaction
intensity metrics (frequency of key presses) are most likely to
characterize player behaviour, followed by playing skill at wall
avoidance and turning style (high / low turn frequency).

F. Discussion

Applying LDA to Snakeotron player data has identified
some meaningful variations in player style. The findings here
are reinforced when we compare the results of a previous study
of Pac-Man [11]. In that study, we took the data of 245 players
with 5 matches of Pac-Man each and ran a linear discriminant
analysis on similar metrics as described above. We reported
a comparable interpretation of the most significant metrics to
classify player behaviour: physical interaction with the game
interface, and secondly main game ideas. Furthermore, we can
also see parallels when identifying risky versus risk-averse
playing styles. In Snakeotron, this is indicated by the fourth
LD dimension (accepting damage for a higher score).

In future work, the above Snakeotron analysis will form
the basis of a fully adaptive game, where the selection of a
rule set that is custom tailored for a player is based on a

Fig. 3. A typical screenshot from the first level of Rogue Trooper. The player
controls Rogue (centre foreground). On-screen displays show nearby NPCs
(bottom left) and ammunition and health (bottom right).

classification of playing data by LDA. As the games become
more complex, we can also see challenges for automated data
analysis, namely:
• A diverse rule set: Unlike Pac-Man, Snakeotron has a

more diverse game environment between each match,
which entails a larger variation in playing behaviour.
We expect this variation to increase with more complex
games that allow the player more freedom, both in control
and in gameplay decisions.

• Unknown core game idea: Pac-Man is one of the most
iconic arcade games and very well known. Any learning
affects are going to be smaller, while these are likely to
be large with novel game concepts.

In Snakeotron, we’ve already seen a less clear-cut classifica-
tion that required a somewhat more complicated interpretation
than with the Pac-Man studies. We are currently planning more
studies with Snakeotron and another game that will tackle
these issues.

IV. STUDY 2: ROGUE TROOPER

Although applying LDA to log data from arcade games
like Snakeotron can give us insights into player style, a
key question for wider commercial application is: does this
approach generalise to more complex gameplay? To show that
it does, we describe the application of LDA to log data from
Rogue Trooper (Eidos/Rebellion, 2006), a modern commercial
third-person shooter video game.

In Rogue Trooper, the player must navigate a soldier through
a complex 3D landscape and defeat a series of enemy soldiers
in combat. Figure 3 shows a typical screenshot from the first
level. On release, the game was well received by critics,
and noted for its relatively complex and flexible gameplay
involving a variety of combat and stealth elements [28].

Compared to arcade games, this kind of rich gaming envi-
ronment allows and expects players to engage in a far more
complex range of interconnected and overlapping activities.
While studying Rogue Trooper, amongst other activities, we
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observed players preparing for and engaging in combat, check-
ing combat had finished, abandoning combat, navigating to
and exploring locations, getting lost, retracing their steps,
investigating the controls and game mechanics, even admiring
the scenery.

Considering the potential for diverse activities within a
level, it is clear that any metric — say, mean ammunition
level — applied to the log data for an entire level will
be significantly affected by the exact sequence of activities
undertaken. When it comes to comparing different level logs
and different players, the utility of such general metrics is
therefore severely limited, as it is very unlikely that a similar
series of activities are being compared.

Hence a key challenge to applying machine learning tech-
niques to complex gameplay is to identify which sections of
each log can be extracted and meaningfully compared using
metrics. Below we look at extracting combat log data to model
player style, and describe a general method for extracting
combat data from shooter game logs (Section IV-B). This
allows us to apply LDA to Rogue Trooper log data (Sections
IV-C to IV-D), and then to group the players using k-means
clustering (Section IV-G). First, we describe how the log data
was obtained.

A. Data Capture

In collaboration with Rebellion Developments Ltd, the
developers of Rogue Trooper, the PC version of the game
was customised so that it recorded log data to a local XML
file. The game logged a single game frame every 0.2 seconds,
which in our study corresponded to roughly one frame in
every seven. For each logged frame, various data about the
player character (PC) and every other currently spawned entity
(NPCs) within a set distance was recorded: the entity’s position
and orientation in 3 dimensions, health, selected weapon and
weapon state (firing, reloading etc.). Other aspects of the PC’s
state were recorded, such as ammunition level and current
animation, along with the current AI state for NPCs. The game
also logged certain events independently of the regularly timed
frame: PC actions such as grenade or health pack use, sources
of damage to the PC, objective completion, and interruptions
to gameplay such as cut scenes, pop up messages and player-
controlled pauses.

To collect the log data for this study, 32 participants were
asked to play the first level of Rogue Trooper in return for a
small monetary reward. The level consists of a fairly linear
series of combats designed as an introduction to the game
controls and mechanics. It introduces the use of the rifle, sniper
rifle and grenades, and the use of cover.

Participants were required to play for a minimum of 20
minutes, but could complete the level more quickly or choose
to play for longer. As well as being logged by the game,
screen video was captured using FRAPS3. The first player
(P1) piloted the data capture setup, and three players (P2, P4
and P5) were asked to play the first level twice — resulting in
35 level logs. Apart from the pilot, players were additionally
asked to rate their overall immersion in the game on a

3http://www.fraps.com/

scale from 1 to 10 (taken from [29]). Further questionnaires
and interviews on player experience were also completed by
players, but as the focus of this paper is on log data analysis,
we do not report them here.

The participants were predominantly male (88%), between
the ages of 18 and 35 (91%), had been playing video games
for more than 5 years (88%) and played at least once a
month (75%). The majority completed the level (81%), with 6
players giving up part way through. Overall, they completed
over 10 hours of logged gameplay in 35 level attempts, with
the average attempt taking 18 minutes. XML log data was
imported into the R statistical computing environment for
analysis [30].

B. Extracting Combat Data

After data capture, the next stage was to identify those
sections of the game logs which corresponded to player
combat. As discussed above, our aim was to allow meaningful
comparison between players by extracting sections which
represented a single activity and excluding other activities as
much as possible. We focused on combat, as it is the most
important activity in Rogue Trooper. Further analysis could
include other activities, such as navigation around the level
[12]. For other games and genres, activities such as problem
solving may be more relevant for modelling player style.

In Rogue Trooper, as is often the case in the shooter genre,
the player encounters a series of NPC groups which need to
be engaged in combat in order to progress. We can therefore
define each individual combat as an interaction with a known
group of NPCs during a single PC life. If the player engages
a given NPC group during a given life, then we can use the
NPCs’ AI state to identify an ‘active period’ within the log
data for that life. All combat data is contained within the active
periods for the various NPC groups.

For a given NPC group and active period, we can identify
the start of combat as the moment the NPCs first fire on, or
receive damage from, the player. Hence for each NPC in the
group, we define α as the first frame in which their weapon is
fired, and β as the first frame they receive damage. We then
define α (resp. β) for the entire group as the earliest α (resp.
β) frame for the group members. Combat between the player
and the NPC group is identified as starting at whichever frame
α or β is the earliest. We assume that the end of combat is the
end of the NPC group’s current active period, which indicates
the death of the PC, the death of the entire NPC group, or the
completion or quitting of the level.

Some features have different interpretations depending on
whether the PC survives or dies. For instance, considering
combat time, a quick success is very different from a quick
death. Hence we restricted our analysis to combats in which
the PC survived.

Based on our observations of players, we know that players
tend to continue engaging a group of NPCs until the PC or
the group is dead. However, this is not always the case. It is
possible for a combat to start and then be abandoned when the
PC moves away from the NPC group. This could be because
the player explicitly chose to end the combat, or because
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they were not aware that it had started. Such abandoned
combats distort the feature data, and need to be excluded where
possible. One sign of abandonment is that both the PC and
at least one NPC survive, and we excluded these combats.
We attempted to identify further cases by investigating outlier
values and screen capture videos.

An alternative approach would be to identify abandoned
combats by looking for periods without weapon use, and
increasing distance from and lack of orientation toward the
NPC group. However, from observing players, we estimate
only a fraction of combats are abandoned, and it is not clear
whether satisfactory criteria could be framed to exclude only
abandoned combats.

Applying the α-β model to our 35 level logs gives 550
individual combats. In 88 the PC died, in a further 31 at least
one NPC survived, and one further abandoned combat was
discovered from reviewing the study data. The remaining 430
combats were used to compute the feature data.

C. Combat Features

To compare combats across players, a number of metrics for
the combat log data were devised. The process of designing
a feature set initially involved reviewing the screen capture
video data and observing how individual players varied in their
combat behaviour. Visualisation of the log data was then used
to relate behaviour to measurable features. The resulting list
was then pruned of redundant features — those correlated very
highly with another feature — and of features with extremely
low variance, which are not useful for distinguishing players.
This produced a list of 21 combat features.

The feature definitions rely on the concept of the “first
weapon use” (α frame) and “first damage received” (β frame)
within an NPC or NPC group’s “active period”, as described
in section IV-B. For a given NPC or NPC group, we define
γ and ω as the first and last frames of the active period, and
note that the α or β frames may be undefined, i.e. if none of
the NPCs fire or are damaged.

For a single NPC’s active period, we define four values:
• postfire — elapsed time after weapon use, measured from
α to ω. If α is undefined (NPC did not fire) this is zero.

• postdam — elapsed time after damage, from β to ω. If β
is undefined (NPC was not injured) this is also undefined.

• npc.fire — the proportion of the frames α to ω inclusive
in which the NPC was firing.

• final.dist — the distance this NPC was from the PC at ω.
Using these values, we can now define the 21 combat features.
For an NPC group that has an active period from γ to ω, and
possibly frames α and β (defined as the earliest such frames
for its group members) we define six features: :

1) prefire — elapsed time before weapon use, from γ to α.
If α is undefined (no NPC fired) then this is taken to be
the entire active period γ to ω.

2) npc.postfire — elapsed time per NPC after first weapon
use, defined as the time from α to ω divided by the NPC
group size. If α is undefined (no NPC fired), then this
is undefined.

3) npc.lead — elapsed time from attacking to receiving
damage, measured from α to β. This may be negative
or undefined.

4) mean.postdam — mean postdam value for the NPCs.
5) mean.npc.fire — mean npc.fire value for the NPCs.
6) mean.final.dist — mean final.dist for the NPCs.

The remaining combat features are based on the PC’s log data
during the same active period γ to ω. Most measure the frames
from α to ω, as α is more likely to be defined than β (it is
more likely that at least one NPC fired than at least one was
injured). For the period α to ω we define:

7) firing — the proportion of logged frames in which the
PC was firing.

8) pistol— the proportion in which the pistol was selected
as the current weapon.

9) sniping — the proportion in which the sniper scope was
in use.

10) move — the proportion in which the PC was moving.
11) cover — the proportion in which the PC had taken cover.
12) gren.rate — the number of grenades used per minute.
13) mean.aim — the elapsed time per grenade spent in

grenade aiming mode.
14) dist.rate — the distance covered per second.
15) turn.rate — radians turned per second around the yaw

axis.
16) area.rate — the area of the convex hull enclosing the

PC’s path, divided by the elapsed time.
17) zero.ammo — the proportion of logged frames in which

the PC has no ammo.
18) mean.ammo — the mean PC ammunition level.
19) pre.ammo — the pre-combat ammunition level, defined

by the frame before α.
20) mean.health — the mean PC health level.
21) dam.rate — the health points lost per second.

All time-based metrics were adjusted to exclude interruptions,
i.e. time the player spent watching cut scenes, pausing the
game or reading pop-up messages.

D. Applying LDA

Applying the 21 features to all 430 combats gives 9030
feature values. Of these, 14 (0.16%) were undefined because
of undefined α or β frames. As standard LDA does not accept
missing values, these were replaced with zero. Another 7
values (0.08%) were identified as extreme outliers. These were
capped at the upper end of their ‘typical’ range, to prevent
them having an undue influence on the analysis.

Following the method illustrated in the Snakeotron case
study, our aim was to represent each player with a group of
combats in the high-dimensional feature space, then reduce
this via LDA to a low-dimensional space. The LDA space
attempts to separate different players’ combats and bring
together combats by the same player. Recall that we are using
a supervised learning technique with a set of class labels (one
class per player) to perform unsupervised learning of a set of
player style traits.

Including all the successful combat instances for each player
meant the classes were quite unbalanced — between 9 and 36
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combats per player classes. Unbalanced group sizes do not
necessarily have a negative affect on the performance of LDA
[31]. However, the excess combats correspond to parts of the
level where a player has died and then had to complete a
combat again. Hence certain combat scenarios will be over-
represented, biasing the analysis to the style of play they
induce in that player. To balance the number of combats per
player, we represented repeated combats between a player and
NPC group with a ‘mean combat instance’ based on the mean
of their feature values. This resulted in between 9 and 12 mean
combats per player. This feature data was scaled and centred
to standard scores before LDA was applied.

It is important to note that the Rogue Trooper feature
data is multivariate nonnormal and heteroscedastic (i.e. player
covariance matrices are unequal), and so does not conform to
the assumptions of LDA. As discussed in Section II-C, LDA
can still provide useful results in such circumstances. None
of the features are univariate normal, and sample distributions
vary considerably, but are largely similar across players. Many
features are zero-inflated, corresponding to situations where,
for example, the PC can either remain still (zero value), or
move a distance according to a particular distribution (non-
zero value). Some features are closer to log normal than
normal, although following Chinganda & Subrahmaniam [32]
we chose not to log transform, as this does not achieve
normality.

We assessed the player covariance matrices by comparing
their log determinants, a measure of total variance. Because
some were singular, we ignored some ‘low variance’ features
which had only zero values for some players (pistol, sniping,
zero.ammo, cover, gren.rate, mean.aim). For the remaining 15
features, 21 players had very similar log determinants, with
the remaining 11 being split between two groups of similar
log determinants. This suggests three subgroups of players
with roughly equal covariance matrices, with further inequality
being contributed by the six ‘low variance’ features.

E. Interpretation

Figure 4 shows the mean combats for each player plotted
using the first two linear discriminants LD1 and LD2. Each
number indicates a player, and each data point represents the
mean feature values for all the combats that player fought
against a particular NPC group. Figure 5 shows the player
centroids (mean positions) in the LD1-LD2 space, defined as
the mean feature values across all NPC groups they defeated.

Table II gives the proportion of trace for the first three
discriminants, i.e. the proportion of between-player variance
accounted by this dimension. LD1 accounts for 40% of the
variance, the next two for about 10% each, and subsequent
discriminants for 7% or less each. By just retaining the first
three discriminants, we can account for about 60% of the
variance between players.

As with Snakeotron, to interpret the LDA results, we ex-
amine the coefficients for the standardised features. The most
influential feature coefficients for the first 3 discriminants are
given in Table II. Because of the smaller sample and more
complex data, coefficients are smaller than for Snakeotron, and

Fig. 4. Mean combats in the first two dimensions of the LDA space. Note
that the number indicates the player, with each of the player’s data points
representing the mean feature values for all their combats versus a specific
NPC group.

Fig. 5. Player centroids (mean position) in the LDA space



10

TABLE II
INFLUENTIAL COEFFICIENTS FOR LD1-LD3 IN Rogue Trooper

LD Trace Positive coefficients Negative coefficients
1 0.40 move (1.37) npc.postfire (-0.33)

cover (1.16)
sniping (0.38)
firing (0.38)
npc.lead (0.33)
mean.health (0.31)

2 0.11 mean.health (0.96) npc.postfire (-0.52)
mean.postdam (0.50) sniping (-0.39)
firing (0.39) dist.rate (-0.33)
mean.aim (0.39) move (-0.30)
mean.final.dist (0.39)
prefire (0.31)

3 0.10 pistol (0.47) mean.ammo (-0.63)
npc.postfire (0.40) area.rate (-0.43)
move.(0.33) sniping (-0.38)

we use a lower 0.3 threshold. Higher discriminants (LD4+)
contribute less and are harder to interpret.

The first discriminant (LD1) is highly positively influenced
by PC movement and use of cover. Scoring high on LD1
may indicate that the player is actively defensive in combats,
moving and taking cover, whereas low LD1 players tend to be
more static and exposed. High LD1 scores may also be due to
high weapon use (firing and sniping). This suggests that LD1
distinguishes ‘combat dynamism’: active attackers/defenders
(high LD1) versus more passive players (low LD1).

The coefficients tell us which features may contribute to a
discriminant value, and hence factors that can lead to a high or
low value. We can also look at correlations between features
and discriminants to see which are always associated with a
high or low value. LD1 is moderately correlated (ρ = 0.60)
with the move feature, indicating movement is a fairly good
way to distinguish high and low players.

LD2 is highly positively influenced by mean.health, and also
correlates with it (ρ = 0.65) . High LD2 can also be the result
of a high mean.postdam and/or a low npc.postfire: high LD2
players take longer to finish off individual NPCs, but take
less time overall. Conversely, low LD2 players take longer to
deal with a group, but individual NPCs don’t survive damaged
for as long. This could indicate combat strategy: engage-the-
group (high LD2) versus engage-single-NPC (low LD2). This
combination of health and strategy suggests LD2 is contrasting
more cautious players (high LD2) with more reckless ones
(low LD2). This is consistent with the other influential co-
efficients: reckless players move more (move and dist.rate),
while cautious ones fight at a distance (mean.final.dist) and
take longer to engage the enemy (prefire) and aim grenades
(mean.aim).

LD3 can be interpreted in terms of ammunition manage-
ment: it is negatively influenced by, and negatively correlated
(ρ = −0.68) with, mean ammunition and weakly negatively
correlated (ρ = −0.54) with the ammunition level at the start
of combat (pre.ammo). It is also influenced by weapon use:
positively by use of the pistol and negatively by the sniper
rifle. This link between ammunition and weapon choice may
be explained by an not uncommon situation in the first level,

where the PC ran out of ammunition and the player switched
to the pistol, which has infinite ammunition. Many players
did not realise more ammunition was easily available from an
allied NPC, and continued to use the pistol through parts of the
level often associated with the sniper rifle. This is essentially a
lack of player knowledge that could be mitigated by a minor
redesign, e.g. making the ammunition source more obvious.
The discriminant is contrasting those players who often had
low levels of ammunition (high LD3) and, perhaps through this
common error, favoured the pistol (high LD3), with players
who maintained higher ammunition levels, and who avoided
the error (low LD3).

In summary, the first three discriminants provide us with a
model of player style which distinguishes between active and
passive players (LD1), cautious and reckless players (LD2),
and ammunition management (LD3). We hypothesise that
combat dynamism (LD1) is a measure of experience in shooter
games — constant movement and use of cover are often
signs of an experienced player. We propose dynamism is a
measure of style which, although it may be related to combat
performance, is distinct from it. An active/‘experienced’ style
of play does not guarantee success.

LD3 highlights a flaw in the level design related to player
awareness of the game mechanics. This is of less relevance to
player style, but shows the utility of this approach in a game
design context.

Returning to Figure 5, we can see that players are distributed
in a roughly triangular area: in general, the variation in LD2
increases as LD1 increases. In the light of our interpretation,
this suggests a further hypothesis that players who actively
attack and defend (which we propose are experts in this genre)
are more consistent in their level of caution, whereas the more
passive players (novices) are more likely to be very reckless
or very cautious players.

F. Discriminant Validity

The validity of the Rogue Trooper LDA (and our inter-
pretation) can be tested by comparing the discriminants with
external metrics of player behaviour and experience. Here we
briefly look at some end-of-level statistics, player demograph-
ics and a single retrospective question on immersion [29].
The relationships we identified are reported below, and are
consistent with the interpretation given above. Note, however,
that a post hoc search for relationships is highly likely to
identify non-significant effects. Testing these relationships
with additional data gathering would provide better evidence
for our model and interpretation.

1) Level statistics: We examined a number of end-of-level
statistics logged by the game, some of which are presented
to the player so they can get feedback on their performance:
time played, deaths, shots fired, hits, damage taken, damage
inflicted, head shots and tank shots. The latter two measure
hits to enemy soldiers’ head or oxygen tank, both of which
cause instant death and are therefore highly valued. Deaths
were normalised to deaths per hour, and head and tank shots
were normalised to the number of enemy NPCs killed, i.e.
the probability of a head or tank kill. All other metrics were
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Fig. 6. LD1 by player’s gaming frequency. The box-and-whisker plot displays
the median value as a thick black line and the interquartile range (IQR) —
the middle 50% — as a box. The ‘whiskers’ extend to the most extreme data
point that is within 1.5 IQR. Beyond that, outliers are plotted individually.

normalised to per minute measures. We also looked at player
accuracy (hits per shot) and efficiency (damage inflicted per
damage taken).

LD1 correlates negatively with time played (ρ = −0.78),
indicating the more active players complete the level more
quickly than passive players. LD1 is positively correlated with
some measures of being active in combat: shots per minute
(0.69), hits per minute (0.80), accuracy (0.46), and damage
taken (0.58) and inflicted per minute (0.80). The association
with taking damage, and the weakness of the association
with accuracy, suggests that LD1 is measuring combat activity
rather than skill.

In contrast, LD2 is only correlated with efficiency (0.64).
This is consistent with the discriminant measuring player
cautiousness, as cautious player are likely to take less damage
for each enemy they kill.

LD3 is not notably correlated with any of the level statistics.
None of the level statistics are directly related to mean
ammunition levels, so this fits with our interpretation.

2) Player demographics: Some basic demographic data
was collected about each player: age (7 levels), gender, length
of gaming experience (5 levels), gaming frequency (5 levels),
and a list of their favourite games. Using genre classifica-
tion data from Wikipedia and Metacritic, these games were
classified as either shooter or non-shooter. Players who chose
at least one shooter game were classified as shooter players.
Gender was ignored, as only four female players took part.

We carried out a visual inspection of the distribution of
the first 3 discriminants across subgroups. Player LD1, LD2
and LD3 are roughly normally distributed, but variance was
not equal across subgroups. No notable differences in means
were observed for age and experience.

Figure 6 shows LD1 for 5 levels of gaming frequency. More
frequent gamers tend to have higher LD1. The differences in
group means were significant at the 0.01 level (ANOVA, p =
0.005). For genre preference, shooter players had a higher
mean LD1 (1.18) compared to non-shooter players (−0.87),
which was found to be significant (Welch’s t-test, p < 0.001).
These results support our hypothesis that high LD1 players
have higher expertise in shooter combat, although further data
collection is needed to provide more substantial evidence.

3) Self-rated immersion: Immediately after play, players
were asked to self-rate their immersion in the game on a scale
of 1 to 10 (after [29]). No correlations were found between the
discriminants and immersion scores. Taken at face value, this
is not surprising. Any relationships between our style metrics
and player experience are unlikely to be simple correlations.

G. Player Clustering

Both game designers and adaptive games can use a low-
dimensional LDA space directly as a model of player style,
but in some situations it is more convenient to reduce this
continuous representation to a discrete one. Designers may
want a typology of players to inspire their work, or the devel-
opers of an adaptive game may want a discrete classification
to trigger alternate game content. In such cases, we can apply
clustering techniques such as k-means to group players into
a set of player types. For simplicity, we restrict our cluster
analysis to the first two discriminants LD1 and LD2.

To apply k-means, a decision on the number of clusters
(k) needs to be made, either by an analyst or by automatic
methods. One method is to examine the within cluster sum-of-
squares (WSS) for different values of k, a measure of variance
within all the groups, with lower values being preferred. Figure
7 shows average WSS over 100 attempts to find k clusters of
players in the LD1-LD2 space. The smooth decrease in WSS
as k increases shows there is no obvious choice of k for this
data, although a slight kink at k = 2 suggests splitting players
into two types. However, for k ≤ 3 the cluster solutions merely
differentiate players along the LD1 axis. Instead, with the aim
of generating an interesting typology, we choose k = 4, as it
is the lowest k solution which takes account of LD2.

Figure 8 shows a 4 cluster solution using k-means. This
is the lowest WSS solution generated in 10,000 runs of k-
means (k = 4), and was found in 94% of runs. To help
characterise the player types, we have named the clusters
Hyperactive (highly active), Normal (moderately active and
cautious), Timid (passive and cautious) and Naive (passive
and reckless). The names serve as a stereotype for each class
and, without further validation, should not be taken too literally
as an expression of player experience.

The clusters can be characterised in terms of the external
metrics discussed in Section IV-F. Table III gives typical
relative values for the end-of-level statistics and self-rated
immersion. The typical level statistics for a group can be
predicated from the correlation with each discriminant and the
group’s location in the discriminant space.

However, examining the player clusters does suggest a novel
relationship between immersion and the discriminant values.
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Fig. 7. Within cluster sum of squares by number of clusters k, for Rogue
Trooper player centroids in LD1-LD2 space.

Fig. 8. k=4 cluster solution for Rogue Trooper player centroids.

TABLE III
TYPICAL CHARACTERISTICS OF Rogue Trooper PLAYER TYPES

Metric Hyperactive Normal Naive Timid
Time Low Low High High
Shots/min High High Low Low
Hits/min High High Low Low
Accuracy High High High-Low High-Low
Taken/min High High Medium Low
Inflicted/min Med-High Medium Low Low
Efficiency Medium Medium Low High
Immersion Low-High Medium Med-High High

Fig. 9. Self-rated immersion for first level of Rogue Trooper, by player type.

Figure 9 shows immersion scores by player type. It appears
that Normal and Naive players experience medium/high levels
of immersion. In contrast, Hyperactive players scored a much
wider range of values, from high to low immersion, and Timid
players scored uniformly highly. One must be careful not to
over-generalise from this data (there are only 3 players in the
Timid group), but this does suggest some hypotheses.

The first hypothesis is that, as we have proposed that high
LD1 players are experts in the shooter genre, Hyperactive
players may have strong opinions about games in that genre,
and if the game is not their taste, they may be more likely to be
disengaged and to express this opinion. A second hypothesis
is that Timid players, who are playing quite statically and
cautiously, may be very focused on the PC’s safety and
avoiding danger. This would be consistent with a high level
of cognitive immersion in the game.

H. Comparison with PCA

Grouping log data extracts by player allows us to apply
LDA to identify the dimensions of greatest variation between
players. The central idea of LDA here is that it is maximising
variance between combats from different players, whilst min-
imising variance between combats from the same player (as
described in Section II-C). A natural comparison to make is
with PCA, which chooses dimensions of maximum variance
without reference to class labels. What kind of model of Rogue
Trooper combat does this give us? And do we gain anything
by considering individual players?

Table IV shows the influential coefficients for the first three
principal components for our mean combat data. Briefly, we
interpret PC1 as describing movement in combat, PC2 is
combat success (quick, high health versus long, low health),
and PC3 is combat distance. PC1 and PC3 are not correlated
with any external player metrics. PC2 is weakly correlated
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TABLE IV
INFLUENTIAL PCA COEFFICIENTS FOR Rogue Trooper

PC Trace Positive coefficients Negative coefficients
1 0.15 move (0.43)

dist.rate (0.40)
area.rate (0.39)
turn.rate (0.34)

2 0.15 npc.postfire (0.45) firing (-0.31)
mean.postdam (0.38) mean.health (-0.30)
prefire (0.31)

3 0.09 sniping (0.52)
mean.final.dist (0.52)

with time taken (0.55), and weakly negatively correlated with
shots (−0.62) and hits (−0.65) per minute, damage inflicted
per minute (−0.53) and efficiency (−0.51). This lends weight
to the interpretation of PC2 as combat success. It also suggests
PC2 is related to the first two linear discriminants, and
correlations confirm weak negative associations (LD1, −0.50;
LD2, −0.59). LD1 is also moderately correlated with PC1
(0.64). The models are clearly related, but quite distinct.

Comparing the first two dimensions of each reduced combat
space, the ratio of between-player distance to within-player
distance is higher for LDA (1.47) than for PCA (1.06). One
would expect this, given the purpose of LDA is to maximise
this ratio. However, considering the different 13 combat sce-
narios in level 1, the ratio of between-scenario distance to
within-scenario distance is lower for LDA (1.02) than for
PCA (1.30). PCA is separating the different sections of the
level more than it is players, and the reduced feature space
is more influenced by game content than player style. We
would argue that the PCA dimensions of combat movement,
success and distance are traits of particular combat scenarios,
whereas LDA’s combat activity, cautiousness and ammunition
management are more descriptive of player style.

V. DISCUSSION

The Snakeotron and Rogue Trooper studies show how LDA
can be used to generate quantitative models of player style
from log data, by reducing the dimensionality of a feature
space for game logs (or log extracts) grouped by player. The
reduced space can interpreted as a trait-based model of player
style and can be used by designers to yield insights for novel
and complex forms of gameplay, either directly or from a
player typology generated by clustering.

The studies have suggested a number of hypotheses about
player style in these games which merit further research, and
may well generalise to others in the same genre. The Rogue
Trooper study showed that LDA could highlight distinctions
in style like Active-Passive and Reckless-Cautious that seem
to be distinct from task performance. This suggests that it is
well suited to modelling aesthetic aspects of player style that
go beyond ability or strategy.

Player style models, like those presented here, could be
used as a basis for adaptive content. Developers could either
employing the discriminant functions directly for measur-
ing/classifying players, or by using the generated player type
labels as training data for some other classification technique.

In future work, we will look at using the models of style
generated to help estimate player experience from log data,
and to realise live adaptation, either directly from style models
or as part of a larger player modelling system.

A. Alternatives to LDA

Unsupervised projection of game log feature data to a lower-
dimensional space could be performed by a variety of tech-
niques. Unsupervised learning techniques such as Principal
Components Analysis (PCA) [4] or self-organising maps [5]
would produce models of gameplay of a similar kind to the
ones presented here. Multidimensional Scaling has been used
in this context to reduce player movement data and identify
distinct navigation behaviours [12].

However, an advantage of using a supervised projection
method, like LDA, in this context is that the projection can
better model differences between players. In Section IV-H we
presented a brief comparison of PCA and LDA for the Rogue
Trooper which illustrates this point: the PCA model charac-
terises combat scenarios better than it does players, whereas
LDA is designed to separate classes — in this case, players
— in the projection. When using unsupervised techniques to
model players, the feature data should be designed to remove
other sources of variation. For instance, one could compare
repeated plays of the same content, or a single set of feature
values per player, as in [10]. LDA can cope with multiple data
points per player covering diverse content, which makes it a
more flexible approach.

LDA has the advantage of being widely studied and ap-
plied, and relatively easy to apply and interpret. However,
discriminant analysis offers a range of supervised projection
methods beyond LDA, e.g. quadratic DA, mixture DA, LDA
with ranks. Many of these have been designed to remove, or
to be more robust toward, LDA’s assumptions of normality
and/or homoscedasticity [24], making them good candidates
for player modelling. There is great potential to explore the use
of, and perform comparisons between, a range of supervised
and unsupervised methods in future work on player modelling.

B. Use in Game Design

Our approach to player modelling is general enough to be
applied in almost any gaming context where log data can be
obtained. For any new application, the main challenges would
be determining appropriate sections of log data to extract, and
designing appropriate features for the analysis. Future work
with shooter games could focus on improved identification
of the start and end points, e.g. based on visual contact and
determining player goals.

The process of modelling gameplay, along with the in-
terpretation of results, introduces the possibility of bias in
the player style models formed. However, they could provide
valuable insights for designers, and the method itself does not
carry any preconceptions about style, making it well suited for
investigating styles influenced by aesthetic considerations that
may themselves be hard to model.

We would also argue that this approach is suitable for adop-
tion by commercial games companies. It employs standard
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statistical and machine learning techniques, widely available
in a number of software implementations, both free (e.g. R)
and commercial (e.g. SPSS). Applying LDA to log data can
certainly involve some interpretation and decision making, but
if properly supported by software tools, this requires only a
little technical knowledge, which could be supplemented by
diagnostic assistance and visualisation built into those tools.

Learned player style models could play a number of roles
in game design. By describing what styles of play are actually
emerging from the game mechanics and content, they can
inspire game designers to create static or dynamic content that
is specifically aimed at providing a satisfying experience for
a given style. Conversely, a designer can deliberately work
against a particular style, either to temporarily encourage a
different style and therefore a more varied experience, or to
permanently discourage certain styles of play.

What constitutes an appropriate response to a player style
depends on the designer’s goals and their understanding of
the corresponding player experience, either from their own
expertise or player testing. However, returning to our Rogue
Trooper typology, we can imagine some possible responses to
the styles we found: Hyperactive players might be served more
complex combat scenarios to maintain their interest, or stealth
tasks that require more passive play. Timid players could be
allowed larger pauses between periods of high activity, or in-
game instructions could encourage them to be less cautious
and passive. Naive players could be allowed a ‘grace’ period
of reduced danger at the start of combat to compensate for their
lack of caution, or they could be given additional assistance
with situational awareness.
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