
345 Ludic Computing

Lecture 11

Behaviour Trees

Simon Colton & Alison Pease
Computational Creativity Group

Department of Computing
Imperial College London

ccg.doc.ic.ac.uk

http://www.youtube.com/watch?v=N04gXtW2xEM

Controlling NPCs

• NPC AI can be critical to a game: often the reason players can
“see behind the curtain”

• Range of solutions suitable for different contexts

• Finite State Machines, e.g. Quake

• Hierarchical Concurrent State Machines, e.g. Left for Dead

• AI planners, e.g. F.E.A.R.

• Behaviour Trees, e.g. Halo 2

• + many others

• Multi-level solutions are common (e.g. global, agent, animation)

This Lecture

• Brief look at state machines

• Behaviour trees

• Basic concepts

• Non-determinism and concurrency

• Decorators

• Behaviour blackboards

NPC State Machines
Example: Cleaner Robot

Events trigger transitions between states

Search
Move to
rubbish

Move to
bin

Spot rubbish

Collected
rubbish

Rubbish
 disposed

NPC State Machines
Example: Cleaner Robot

Behaviour code quickly becomes unmanageable

Spot rubbish

Collected
rubbish

Rubbish
 disposed

Low
power

Fully
charged Low

power

Fully
charged

Fully
charged

Low
power

Move to
bin

Recharge
(Search)

Recharge
(Bin)

Search
Move to
rubbish

Recharge
(Rubbish)

NPC State Machines
Example: Cleaner Robot

Hierarchical machines handle complexity better

Spot rubbish

Collected
rubbish

Rubbish
 disposed

Low
power

Fully
charged

Move to
bin

Search
Move to
rubbish

Recharge

Clean up

NPC State Machines

• Hierarchical machines help tame “transition spaghetti”
for complex behaviours

• But can still be hard to maintain/reuse

• State/event-oriented, hard to design goal-oriented
behaviour

• Still an important tool in game AI, especially combined
with other AI techniques

• Adding concurrency and non-determinism can increase
sophistication/realism

Behaviour Trees

• Programming idiom for Game AI

• Task-oriented rather than state-
oriented

• Modular, reusable behaviours

• Can easily be built up into
hierarchies of increasingly
complex behaviours

• Used in Halo 2 (2004), Spore (2008),
Grand Theft Auto series + many others

Behaviour Trees

Enable designers (often non-programmers) to easily manage
NPC behaviour with a GUI editor

Behave for UnityBrainiac editor

Basic Node Types

• Leaf nodes

• Conditions, e.g. “is the player visible?”

• Actions, e.g. “attack the player”

• Composite nodes (with 2 or more subtrees)

• Selector (“a or else b”)

• Sequence (“a and then b”)

• When a node is executed, it passes succeed or fail
back up to its parent node

Basic Node Types

Conditions

• Test some property of the game world

• Proximity

• Line of sight

• Object state

• Character state, e.g. health > 50

• The test returns succeed or fail

Basic Node Types

Actions
• Change the state of the game world

• Perform animations or play audio

• Character state, e.g. resting increases health

• Engage the player

• Can use specialised code, e.g. pathfinding

• Normally will succeed, but can fail

• Best to catch the failure cases with a conditional

Basic Node Types

Selectors

• Tries each child tree in
turn

• Stops and returns
success when a child

succeeds

• Returns fail if none

succeed

Attack Taunt Stare

?

Basic Node Types

Sequences

• Tries each child tree in
turn

• Stops and returns fail

when a child fails

• Returns success if

none fail

Enemy
visible?

Turn
away

Run
away

→

Example
Entering a Room

Ask yourself:

• What are the actions?

• What are the conditions?

• How are these combined?

If the door is open, then move into the room. If the door is not
open, then move to the door, open the door, and move into the room.

Door
open?

Move into
room

Move to
door

Open
door

?→

Example
Entering a Room

Door
open?

Move into
room

Move to
door

?

Open
door

→

Move into
room

→

If the door is open, then move into the room. If the door is not
open, then move to the door, open the door, and move into the room.

if door.isOpen()

move_to(room)

else

move_to(door)

open(door)

move_to(room)

if !door.isOpen()

move_to(door)

open(door)

move_to(room)

Example
Entering a Room

Refactor

Door
open?

Move into
room

?

Open
door

→

Move into
room

→

Move to
door

?

→

Move into
room

Door
open?

Open
door

→

Move to
door

Example
Entering a Locked Room

If the door is open,
move into the room. If
the door is not open,
check whether it is
locked. If it is not
locked, then open the
door and move into
the room. If the door
is locked, then barge
the door open, and
move into the room

Door
open?

Move into
room

Move to
door

?

Open
door

→

→

→

→

Door
unlocked?

Barge
door

Door
open?

?Open
door

Non-Determinism

• We don’t want NPCs to be predictable

• ND-Selector: choose between children
in random order

• ND-Sequence: carry out children in
random order ~?

↔

Non-Determinism
Example: Destroy the Door

Barge
door

Douse
door

~?

Ignite
door↔

→

Get
Petrol

Get
Matches

→

Door
open?

Door
open?

Decorators

• Nodes which modify a single child

• Many possible modifications...

• Carry out child until it succeeds or fails

• Timer

• Execute with probability

• Repeat N times

• Invert success and failure

• ...

Until
fail

Until
succeed

Prob.
50%

Repeat
10

Decorators
Until Fail Example

Near?

→

Hit Pause

RestrainUntil
fail

→

HitConscious?

Concurrency
Parallel Composite Nodes

• Behaviours often need be performed concurrently

• Adds flexibility and realism (talking & walking)

• Parallel sequence: try all children concurrently and
succeed when all have succeeded. When one
fails, request other children terminate, then fail

• Parallel selector: try all children concurrently and
succeed when one has succeeds. Fail when all
failed

• We have to worry about thread efficiency and
safety issues. In particular, in-game actions which
conflict

???

→
→
→

Concurrency
Group AI Example

→

Group
Attack

Guard 1
Fire

Guard 1
Find Cover

→
→
→

Guard 2
Find Cover

Guard 3
Find Cover

Guard 3
Throw

Grenade

Repeat
5

→

Group
Approach

→

Concurrency
Interrupters

• Concurrent behaviours may go on indefinitely

• But we may want to stop some/all of these in
response to the state of just one of them

• Wrap each concurrent child in interrupter
decorator

• This is referenced by an interrupt action,
which can requests the interrupter
terminates a child’s behaviour

Concurrency
Game Resources

• Concurrent behaviours may be want to use the same limited
resources

• Computing resources, e.g. too many NPCs requiring
pathfinding solutions will overload the processor

• In-game resources, e.g. too many NPCs docking at the same
health station will look very odd

• Multimedia resources, e.g., too many noises at the same time

• Can add conditions to check current usage to each task

• Relies on designer to include relevant checks, difficult to manage
for large trees

• A more elegant solution is to employ semaphores

• These keep a tally of the number of resources available and
which tasks are using them

• Each behaviour must ask a semaphore whether it can use the
given resource

• Wrap behaviour in semaphore guard decorator

• Returns failure when the semaphore says no, in

which case another behaviour can be tried

Concurrency
Semaphore Guards

Using Data

• Behaviours need to retain and exchange information

• Details about the choices made (e.g. target this enemy)
and information discovered so far (e.g. good cover spots)

• Idea is that the overall behaviour remains the same, but is
modified to fit the given data

• Want to avoid behaviours with huge number of
parameters, as this breaks the clean programming
interface

• Although small number of typed parameters is fine

Behaviour Blackboards

• Blackboard architectures are standard AI technique
for avoiding excessive parameterisation

• Each task has the ability to write to the blackboard and to
read from it anything that has been written by other tasks

• Design choices...

• Global blackboard and/or per-behaviour blackboards
and/or blackboards spawned by sub-behaviours

• Which blackboard takes priority? One possible
solution: passing the blackboards down the tree, look
at the most specific blackboard

Behaviour Blackboards
Example: Storing Selected Enemy

Engage
enemy

(read BB)

→

Select
enemy

(write BB)
Try

→

Select cover
(r/w BB)

Take cover
(read BB)

Cover
available?

Enemy
visible?

Reusing Behaviours

• One of the benefits of behaviour trees is reuse
of (sub)behaviours with very little extra coding

• Maintain library of trees/subtrees

• Can dynamically instantiate subtrees to control
agent if/when behaviours are required

• Saves memory, e.g. memory constrained
platforms, or when you have 1000s of
NPCs

Limitations

• Difficult (but not impossible) to build behaviour trees which
are quickly reactive

• Dynamic nature of games mean one behaviour has to be
aborted midway-through in favour of another one

• Can get around this with interrupter decorators, but that
is cumbersome

• Possible solution: combine with a state machine approach,
with each state having one or more behaviour trees

Summary

• Behaviour trees are a conceptually simple and powerful
solution to programming game agents

• Accessible to designers

• More sophisticated behaviours with decorators, non-
determinism, concurrency, blackboards

• Currently popular in commercial game AI — though
many other techniques are used (state machines,
planners, priority systems, sensory systems, ...)

• Custom hybrid approaches often used

Reading & Resources
(Optional)

• Ian Millington & John Funge (2009) AI for Games,
2nd edition. Pages 334-371 on BTs

• Damian Isla (2005) Handling Complexity in the
Halo 2 AI, GDC 2005. [http://www.gamasutra.com/gdc2005/

features/20050311/isla_01.shtml]

• http://aigamedev.com

