Computers are among the most significant and exciting technological innovations of the last hundred years. In the future, they will continue to shrink in size, become embedded in our domestic appliances and tools, clothes and perhaps our own bodies. They will undoubtedly play an even more considerable role in medicine, the sciences, industry, communications and the arts.

Although it is impossible to predict exactly how computers will develop and be used, it is safe to say that the science of Computing will remain a vitally important part of modern civilisation, being responsible for many of the most important changes to the world in which we live.

The undergraduate degrees we offer in the Department of Computing at Imperial are designed to prepare our students to play a serious part in shaping this future.

Key Features of a Computing Degree at Imperial

- Choice of 5 four-year MEng degrees or a three-year BEng degree in Computing; a four-year MSci degree or a three-year BSc degree in Mathematics and Computer Science
- Well-paid Industrial Placement organised as part of your MEng/MSci degree
- Highest average graduating salary for Computing degree in UK
- Department Excellent-rated for teaching and top-rated for research
- World top 10 for staff-student ratio
- Undergraduate Research Opportunity Programme (UROP) which gives unique research experience to 1st and 2nd year students

Imperial College London is rated as the fifth best university in the world. In this guide to Computing at Imperial College London, you will discover what it’s like to study Computing and what Imperial can offer you as an undergraduate and beyond.
Why Choose Computing?

Computing is a creative and wide-ranging subject, very different from Information Technology as taught at school. In our Department, for example:

- we are applying parallel computing methods, allied to powerful multiprocessor machines, to mine vast data sets in order to expand our knowledge in scientific, engineering and financial areas.

- to enable next-generation Computing with smart environments and ambient intelligence, we are building audiovisual systems that can automatically sense and analyse human behaviour. We can already capture intentions, emotions, and social signals, including facial expressions, body postures and gestures, and vocal outbursts, like laughter and yawning.

- we are creating models of the stock market which allow investors and banks to select a portfolio of shares which will maximise investment return while minimising their risk.

- we are looking at the way people perceive 2D images as well as the 3D world. This will enable us to develop tools to help clinicians diagnose problems from X-ray and magnetic resonance images. It will enable surgeons to participate remotely in operations when patients may be on another continent.

- we are developing wireless sensor technology that helps model flows of people around buildings that can enable safe building design in disaster scenarios. It can also be used to ensure that patients are tracked and treated as quickly as possible in accident and emergency units.

What all these applications share are the fundamental scientific, mathematical and engineering techniques that underpin all of Computing. You will learn how to use methods from Mathematics and theoretical science to study the nature of software and computer languages, so that you are able to write programs that perform correctly and efficiently. You will also learn about the limitations of Computing.

For example, a lot of theoretical work underpins the software used in artificial intelligence. This branch of Computing aims to enable machines and computer programs to carry out tasks associated with requiring intelligence, such as understanding spoken English, recognising people’s faces, proving mathematical theorems or composing sonatas.

Computer programs are tools, just as telescopes or scanners are, and they can be extremely complex—often running into many millions of lines of program code.

There are, therefore, very practical engineering aspects to Computing. You will learn systematic methods you can use to develop pieces of software. Most large software systems are produced by groups of programmers. You will gain experience of working in a team, using your own particular strengths and making sure your code meshes successfully with that of your colleagues.

It is no good producing perfect software if it is left on the shelf, gathering dust, because it is unintuitive or difficult to use. As an engineer you will learn how to build successful human-user interfaces for your programs.

STUDENT PROFILE // Amanda Lalisang // 4th Year

"I am currently on my Industrial Placement at IBM Southbank. My first project was to enhance the prototype functionalities for the Graphical User Interface of its web-based product and I am currently working on an automated testing system using a combination of a framework and several programming languages.

The placement is a two-way experience. The people I work with find the knowledge I have gained throughout the course very useful. In return, I have had the opportunity to widen my experience of a range of practical issues that are not covered in the course and more importantly, develop my soft skills.

Computing is a subject that combines both creativity and technical knowledge. The range of the career paths it offers is wide. I find that as I progress along the academic and internship routes, I gain better insights as to which career path I want to pursue after I graduate."
Computing as a Degree Subject

Applying software is normally a collaborative effort between the programmers and the people who understand the problem—often the end users. At Imperial we enjoy a particularly active partnership with other faculties—the sciences and medicine. This has resulted in many exciting applications of computers to discovery and problem solving in biology, medicine and the physical sciences.

Individual and group project work will give you experience of collaboration as well as concern for an end user’s needs. Imperial’s Undergraduate Research Opportunities Programme provides the opportunity to work with users in other departments across the College.

A major difference between traditional branches of engineering and software engineering is that civil, mechanical or electrical engineers build solid physical objects. A software system is an abstract artefact, a very precise description or model of a particular computation.

Mathematics offers the language for reasoning about abstract tools. If you have been studying A-level maths at school, you have had just the right kind of mental preparation for studying Computing at university.

In fact, one of the most intellectually satisfying and enjoyable aspects of studying Computing is applying your knowledge of maths in useful and interesting ways, perhaps in graphics, financial modelling or in designing encrypted communication systems.

Studying Computing involves a great deal of practical work too, from small-scale programming exercises, to group and individual projects that might run over a complete year and involve the use of cutting-edge technology. It is enormous fun to work on a difficult problem and see your solution come to life in the form of a successful computer program.

STUDENT PROFILE // Azalea Raad // 3rd Year

“I chose Imperial because of its exceptional reputation for Computing and teaching. The courses are very varied, from logic and Mathematics to low-level programming and hardware, and that means that everyone finds an area that they really enjoy and are motivated by.

The university gives you many opportunities to get involved in what interests you. I spent my first summer working on a project as part of Imperial’s research scheme, UROP. I developed a tool for logic teaching which is now being used to instruct first year students. That was not only a great learning experience but also felt very rewarding to see people using the application. I also spent the summer after my second year working in the technology department of Morgan Stanley, working on large scale, real world problems in an exciting environment. Opportunities like this add new skills that are valuable for my study.

I enjoy being a part of the Department. I’ve held the position of student representative for the whole department (the DoC Rep.), worked at open days and been a teaching assistant as a part of Department’s personalized tutorial system organized to help first year students find their feet in new subjects. Taking part in teaching is a great experience, and it’s led me to working in local schools as a Science and Engineering Ambassador (SEA), all arranged thanks to contacts in and around the College. I hope to pursue a PhD here and continue teaching as the Department is full of friendly and supportive people, who give you the ability to enjoy what you do.”
A degree in Computing opens the door to a wide range of careers. Roles span technical innovation, management, analysis, consultancy, training and research in many industry sectors.

Media
From the BBC to Electronic Arts: Computing students regularly go into media industries to design and build anything from the latest post-production broadcast-quality TV graphics systems to pre-rendered massive agent-based simulations for film CGI. The Department of Computing has a close relationship with many large and small UK games houses and post-production companies, through its annual Games and Media Event (GaME) and many of our students end up working in this exciting industry, worth in excess of £5 billion per year to the UK economy.

Finance
From Goldman Sachs to Morgan Stanley: Finance is a popular and lucrative employment destination for both Computing and Joint Mathematics and Computer Science students. Investment banks recruit for both financial software development and also for quantitative analysis and modelling. We currently have six major investment banks signed up to our Industrial Placement programme which is a great way to find out if this is the industry for you.

Software
From Microsoft to Google: You will have been exposed to a wide range of programming languages and programming paradigms by the end of the second year. More importantly for a talented software engineer, you will have the problem solving skills to pick up any programming language or environment that you decide is the best tool for the job. Many leading software giants hold recruitment events during the year at Imperial, and many also participate in our Industrial Placement scheme.

Research
From MIT to Imperial: The top 20% of our fourth-year Computing MEng degree and Joint Mathematics and Computer Science MSci degree are highly sought after by PhD supervisors from all over the world. These are often students who have been excited and motivated by research during their undergraduate degree by joining one of our research sections during their summer vacation under the Undergraduate Research Opportunities Programme.

Computing at Imperial
According to the latest Association of Graduate Recruiters survey, Information technology posts are among the most numerous graduate jobs with some of the highest starting salaries. This is backed up by a recent survey in the New Scientist which states that graduates with degrees in mathematical sciences and informatics are likely to obtain jobs with higher starting salaries than graduates in other disciplines.

Imperial’s Computing degree produces some of the most sought-after graduates of any computing-related degree in the UK. We have close working relationships with many of the major employers of Computing graduates—not only software and communications companies such as Microsoft, IBM, Hewlett-Packard, Google and Philips—but also financial computer users, including Goldman Sachs, Morgan Stanley, UBS, Barclays Capital, Credit Suisse and Deutsche Bank.

Benefits
We believe it is important for our students to be rigorously educated in the fundamental ideas of Computing, in professional approaches to software engineering and in the methods of applying software to solve problems in industrial, commercial and scientific domains. With these skills, you will be able to adapt to change and use your knowledge creatively.

You will also take a course introducing the principles of organisation and management, with further options available in entrepreneurship, economics and law. This gives you a practical and businesslike approach to developing your technical expertise. It will make you more marketable initially and also be an invaluable asset as you rise through management.

Although you will gain a wide variety of practical experience and skills in the latest software and hardware technology, our purpose at Imperial is not merely to train, but to teach the principles and methods thoroughly and to help you develop your problem-solving skills so that you can confidently face a future in which radical changes are bound to occur.

New graduates from Imperial are the highest paid in the country and you will very likely get a genuine graduate-level job. But a degree from Imperial is an asset that will be of value throughout your working life. The College is renowned throughout the world and our network of over 94,000 alumni offers support in around 150 countries.

STUDENT PROFILE // Richard Hayden // PhD student

“I completed my undergraduate degree, MSci Joint Mathematics and Computer Science (JMC) at Imperial in 2007. Four years of exposure to the exciting real-world problems facing us as computer scientists led me to the realisation that I wanted to be one of the people at the forefront of finding the solutions. The obvious choice was thus to embark on a PhD, which I am currently completing here in Imperial’s Department of Computing.

The original key attraction for me of Imperial was that it offers a proper Joint Mathematics and Computer Science course. Most of the other top universities will force you to make up your mind after a year or so, which I found to be a concerning attitude given that Mathematics underpins such a large cross-section of theoretical Computer Science. Imperial’s JMC degree manages to provide a solid grounding in the fundamentals of both Mathematics and Computer Science, creating a new breed of graduate able to bridge the gaps between the two disciplines, to their mutual benefit. Furthermore, Imperial’s outstanding reputation, facilities and position in the centre of London served to make the decision a no-brainer for me.

I had a very successful undergraduate experience, thanks in no small part to the research opportunities the Department offers to motivated undergraduates, something not encountered in many other universities. If you are willing to put the work in, you may well graduate with experiences, knowledge and skills normally only obtained by studying for a higher research degree, talk about value for money! For example, my third-year group project work led to a paper in an international conference and a trip to Canada to present it. The Department also goes above and beyond the call of duty in supporting recognition of students’ work at the national level. In my final year, the Department nominated me for the prestigious Science, Engineering and Technology Computational Science Student of the Year Award, which I subsequently went on to win based on my undergraduate dissertation.

Who knows what the future will hold, but I can’t imagine a better possible foundation for a career built around solving some of the most interesting problems facing us today!”

1AB: The Flame image was generated using the Avera evolutionary system, based on the early PhD work of Marc Hull.
We are one of the UK’s largest Computing departments, in terms of the number of teaching and research staff. As a world research leader in Computer Science and software engineering, we are one of very few departments of any discipline that have been awarded the top rating in every Research Assessment Exercise. We are especially well known for:

- the discovery of knowledge from large databases
- computational finance
- our work on logic and artificial intelligence
- parallel computer architectures
- distributed computing
- the theoretical foundations of software development
- the application of computers to medicine and biology

We offer a very large range of optional courses, each of which is right up-to-date and taught by a specialist in the field. We have one of the best-equipped departments in the country, with a first-rate technical support team, something only a larger department can afford. All of this contributed to our being awarded an ‘Excellent’ rating for our degrees, from the Higher Education Funding Council for England (HEFCE).

Our relatively modest annual student intake means that every undergraduate receives individual attention. With our tutorial and small group teaching system, we strive for personal development as well as academic attainment.

Students each have a personal tutor who looks after their interests and advises them throughout their time at Imperial. During the first year each student also has a personal programming tutor, a personal maths tutor and a personal logic tutor. In later years the various individual and group projects in which a student is involved are each supervised by a member of the teaching staff.

Imperial has the best staff–student ratio in the country, and the degree of personal attention we are able to give is an important element in producing our stimulating and informal atmosphere.

ALUMNI PROFILE // Mark Morris // Introversion Software

“Whilst I knew that Imperial was going to provide me with an excellent technical education, what I didn’t count on was all of the other skills that I would develop by completing the course. Far more important than my coding ability has been the general approach to problem solving that I learnt during my time in the Department. Logical thinking, concise communication and a drive to succeed are all crucial to business success and had these areas not been cultivated at University then I do not think that I would have enjoyed such success.

When I graduated, I joined forces with two other Computing students and one Electrical Engineer and we started our own video game company called Introversion Software. As managing director my role has been to formulate the business strategy and assist with the project management of our games and other operational projects. Whilst I don’t do much coding, my understanding of this area allows me to work with the development team to ensure that our projects come out on time and to budget and are incredibly good fun to play!

Obtaining a Computing degree provides so many more options than simply programming and I can’t think of a job in which I would be happier than running my own business. Imperial played a key role in helping me develop the skills to do this job and I still try to maintain a relationship with the Department in order to both capitalize on the latest research and hire the latest talent.”
Computing Facilities

We offer our students Computing facilities which are among the best in the UK. Our academics, laboratory organisers and the Computing Support Group ensure that the widest possible range of the most appropriate technologies and software are available for use on our systems. Much of the teaching software we use, as well as a range of Microsoft products, is available for home use by our students free of charge.

Our teaching laboratories are modern and spacious, with over 200 workstations available. To ensure our facilities remain state-of-the-art, we renew groups of laboratory workstations every year. All our workstations have fast networking, whilst those students who prefer to use their own laptops have access to high-speed wireless networking with dedicated special areas set aside for such use. Several high-capacity laser printers allow us to provide free course-related printing, in both colour and black and white.

Research groups within the Department also have extensive Computing resources and specialist hardware of their own; individual access to these is often possible when students are doing project work. All students have file storage, personal email accounts, personal web space and high-speed Internet access; the use of email and the internet being central to life in the Department. The workstations are supported by a range of the latest Sun and Intel servers running Solaris and Linux, connected via Ethernet to a multi-gigabit fibre-optic backbone.

Facilities

ALUMNI PROFILE // Neil Dunn // Google, London

“I graduated from the Department of Computing at Imperial in the summer of 2007 and went straight into a job working as a Software Engineer at Google in London.

The opportunities I’ve received over the past five years have been incredible. At Google I’ve been working on a great product for the past year. I’ve also contributed to Picasa web albums, Google’s core infrastructure, spent 20% of my time working on open source projects. I care about, travelled to California and Zurich and hosted a number of ‘Open Source Jam’ events at Google’s offices.

During my time at Imperial I also spent two summers at IBM working as a Software Engineer in Test, once for a summer internship and once for the six month Industrial Placement as a part of the four-year MEng course. The Industrial Placement and fourth year at Imperial really cemented my passion for Computer Science and gave me the knowledge and industrial experience needed to join the software industry.

The quality of the education in the department is second to none. The focus on core Computer Science has given me the confidence and ability to work on numerous software projects, learn new skills and study the subjects that I’m interested in. The course isn’t just about programming, the education is timeless, I know it will help me for the rest of my career.”

Practical Engineering

Computing is a broad and satisfying engineering discipline that uses your mathematical skills in novel and interesting ways. At Imperial we focus on problem solving as a structured discipline: its engineering principles address issues common to much of the technological world.

We take practical work very seriously. The only way to become a proficient software engineer is to have exposure to a wide range of computer systems, programming languages and tools, with specific engineering problems in mind.

In the first two years, there is a carefully planned programme of laboratory-based work where you solve problems of gradually increasing size and complexity. Each problem is designed to teach a specific aspect of Computing and, at the same time, to expose you to the various software and hardware tools best suited to solving each type of problem. The emphasis is very much on problem solving as a structured discipline: its engineering principles address issues common to much of the technological world.

The best student project work from Imperial is among the most impressive of any academic institution in the world. In 2007 one of our students received the Microsoft Award for the Best Computational Science Student at the SET (Science, Engineering and Technology) Student of the Year Awards. The previous year at the same awards, one of our joint Mathematics and Computer Science students received The GKN Award for the Best Science, Engineering & Technology Student of the Year and also the award for Best Mathematics Student. One of our Computing students also won the The IET Award for the Best IT Student. The SET Student of the Year Awards are the UK’s most important accolades for science and technology undergraduates recognising exceptional achievements of both students and their universities.

Our Distinguished Projects web page provides downloadable copies of the best student project reports in recent years. In the last twelve months there have been over 60,000 downloads from this page, one particular report being downloaded over 24,000 times since its publication in July 2003. The Distinguished Projects web page can be found at: ->: www.doc.ic.ac.uk/go/projects

LEFT: The luminescent Flower image represents an area of non-photo-realistic rendering, which aims to simulate the human painting process. This was generated as part of the Painting II project.

AFTER: The Scratch image was generated using an AI-driven tree representation to string together multiple image filters and create novel and interesting visual effects. Awarded in 2006 Computing Life Student, IET Computational Science Student of the Year Awards, Chi-Tou Yip and George Lin.

Distinguished Projects

The GKN Award for the SET Student of the Year Award is among the most impressive of any academic institution in the world. In 2007 one of our students received the Microsoft Award for the Best Computational Science Student at the SET (Science, Engineering and Technology) Student of the Year Awards. The previous year at the same awards, one of our joint Mathematics and Computer Science students received The GKN Award for the Best Science, Engineering & Technology Student of the Year and also the award for Best Mathematics Student. One of our Computing students also won the The IET Award for the Best IT Student. The SET Student of the Year Awards are the UK’s most important accolades for science and technology undergraduates recognising exceptional achievements of both students and their universities.

The best student project work from Imperial is among the most impressive of any academic institution in the world. In 2007 one of our students received the Microsoft Award for the Best Computational Science Student at the SET (Science, Engineering and Technology) Student of the Year Awards. The previous year at the same awards, one of our joint Mathematics and Computer Science students received The GKN Award for the Best Science, Engineering & Technology Student of the Year and also the award for Best Mathematics Student. One of our Computing students also won the The IET Award for the Best IT Student. The SET Student of the Year Awards are the UK’s most important accolades for science and technology undergraduates recognising exceptional achievements of both students and their universities.

Our Distinguished Projects web page provides downloadable copies of the best student project reports in recent years. In the last twelve months there have been over 60,000 downloads from this page, one particular report being downloaded over 24,000 times since its publication in July 2003. The Distinguished Projects web page can be found at: ->: www.doc.ic.ac.uk/go/projects
I completed my degree, MEng Computing in 2007. This degree included a six month placement in industry at the end of my third year where I worked at Goldman Sachs in Algorithmic Trading. This placement led to me gaining significant experience in industry and to being offered a permanent job at Goldman Sachs after I completed my fourth year, which I accepted.

Imperial provided me with a rounded knowledge and sound base of core theoretical Computing concepts. It was also far more technical than most other Computing degrees offered so I was able to leave University with exposure to and practice with several different technologies. The varied degree allowed me to take financial management and entrepreneurship courses with the Business School in my final two years. This provided a stepping stone into the financial markets which helped land me a technology job in an investment bank.

The large number of research opportunities at Imperial allowed me to choose a final year project which was suited towards my strengths in the degree and what I was interested in. I chose a project which combined computing logic concepts with biological pathways in the human body, again broadening the base of topics covered in my degree. This work is now in the process of being published in a paper. Whilst Imperial offered excellent teaching and research opportunities, it is located in the heart of London so I could enjoy my free time in the lively city!
Computing Experience?
Each year, over half of our incoming students have no prior programming experience. If you are in this category and are thinking of applying to our course but are worried that a lack of Computing experience will leave you at a disadvantage, don’t be: we teach 5 programming languages from scratch in the first year so this is not a problem. We look for people who are initially unsure of your area of specialisation you can change direction to meet your new interests, and if exciting new opportunities. You will be able to different areas will capture your imagination or offer different problem-solving experiences.

Entry requirements
Current entry requirements for all Computing degree courses are: A-level grade A passes in Mathematics and in two additional subjects. These requirements are subject to change as new grades and qualifications are introduced over the next few years. For up-to-date admissions requirements for this course, visit: www.doc.ic.ac.uk/go/requirements

Note that we do not require an explicit qualification in Computing or IT and neither do we expect applicants to have learnt to programme before they start the course.

We also welcome applications from individuals with many other suitable qualifications, such as Scottish Advanced Highers, International, French and European Baccalaureates. For a list of other common international qualifications that we currently accept please see: www.doc.ic.ac.uk/go/requirements

Applicants for admission are not judged on academic ability alone. We make assessments on a wider profile and consider your potential for success in an engineering career.

If you wish to apply for admission to MEng Computing (International Programme of Study) you should hold a GCSE in a foreign language at grade B or above or be able to demonstrate linguistic competence.

Selection process
We invite applicants who are likely to receive an offer of admission to attend an interview. The interview has two main purposes. Firstly, it gives us a chance to assess your motivation and suitability for the course. Secondly, it gives you the chance to find out more about the course and about College life in general. There will also be an opportunity to meet current students and take a tour of the campus.

You may additionally be asked to sit a short entrance test. We will use this in conjunction with your overall application and interview performance to allow us to assess your ability for the programme.

Assessment
Performance is assessed annually by examination and coursework: in four parts for the MEng Computing course and three for the BEng Computing course. Each part consists of a group of formal written papers and assessment of laboratory, course and project work submitted throughout the year. Students on MEng Computing (International Programme of Study) are also assessed during their year away. This is based on their performance in project work, coursework and examinations at their host institution.
THIRD YEAR →
Three-year BSc students take seven options, including at least two technical courses from each department. The courses are selected from a wide range normally including those in the following lists. Four-year students take eight option courses including at least two technical courses from each department. These must include at least two of the courses: Orthogonality, Algebra II and Probability and Statistics I (from the Department of Mathematics).

We give you guidance in planning your third and fourth year programmes as an integrated whole. You may substitute one approved humanities course (not including a foreign language) for one of the seven or eight options.

Computing:
// Geometry I; Algebraic Curves
// Geometry II; Algebraic Topology
// Elementary Number Theory
// Statistical Modelling
// Statistical Theory
// Statistical Modelling II with Application in Finance
// Statistical Theory I
// Applied Probability I
// Statistical Pattern Recognition
// Time Series
// Stochastic Simulation
// Design of Experiments and Surveys
// Gamma, Risk and Decisions
// Biostatistics
// Survival Models and Actuarial Applications
// Monte Carlo Methods in Financial Engineering
// Communicating Mathematics

Mathematics:
// Orthogonality
// Optimisation
// Computational Linear Algebra
// Computational Partial Differential Equations
// Numerical Solution of Ordinary Differential Equations
// Algebra II
// Rings and Fields
// Algebraic Combinatorics
// Enumerative Combinatorics
// Group Theory
// Galois Theory
// Group Representation Theory

FOURTH YEAR →
Students undertake seven courses in all.
This includes at least two technical courses from each department. They also complete an individual project in an area of their choice. The courses are selected from a wide range of advanced options available at fourth year within the two departments.

Three-year BSc course: GG14
Four-year MSci course: GG41
Total expected intake: 30

From its earliest days, Computing has posed questions that require mathematical solutions, such as: ‘How can we compute accurate and correct numerical answers? Can we prove a given program does what it was meant to do? What is the meaning of computation?’ Will the performance of the computer system be quantitatively good enough? On the Mathematics and Computer Science courses we aim to equip our students with the skills needed to answer such questions.

The degree courses give a firm foundation in Mathematics—in particular pure mathematics, numerical analysis and statistics—and cover all the essentials of Computer Science. There is an emphasis on developing software and reasoning formally about it, as well as more theoretical topics. If you are mathematically able, but also take an interest in Computing and would like to apply mathematics to it, these courses are for you.

Graduates of the Mathematics and Computer Science courses are well qualified for careers that normally expect graduates from one of the two separate disciplines, but you would be especially eligible to fill the growing need for professionals well versed in both.

The Departments of Mathematics and Computing at Imperial offer Mathematics and Computer Science as joint honours degree courses. These lead to a degree of Imperial College London (BSc or MSci) or the Royal Holloway College of the University of London (BSc or MSci) and an MSci for those who undertake a substantial Mathematics group project.

Teaching is divided equally between the two departments. Unlike other courses involving the Department of Computing, these courses are unit-based. Two units from each of the two departments are taken in each of the first two years. In each of the third and fourth years you select a total of four units to support your particular interests and areas of specialisation. In your final year you carry out a substantial individual project under supervision.

Our courses are constantly being revised and updated. For the latest information please visit: → www.doc.ic.ac.uk/go/jmc

Course structure
Each year of the course has two terms of lectures and structured laboratory work. The third term is taken up with examinations and project work.

Both the three-year and four-year courses consist of a common two-year core programme, followed by a wide range of options offered by the two departments. Teaching is via a mixture of lectures, tutorials and project work.

During the course, all Mathematics and Computer Science students undertake a Computing group project, which provides them with experience of what it’s like to work as part of a team. Additionally, third-year MSci students also undertake a substantial Mathematics group project.

During the third year the MSci course includes an approved period of professional formation. This will be either an Industrial Placement, extended project or placement in a European Industry or university.

In the final year (third year for BSc, fourth year for MSci) students undertake a major individual project spanning around six months. The project can be either in Computing or Mathematics or a combination of both disciplines. This presents an exciting opportunity for students to put together the skills they have learnt throughout the course—including research and presentation skills—and apply them to a single large-scale problem, under the supervision of an academic advisor. The topics covered by individual projects vary enormously, from the very theoretical to the very practical.

Entry requirements
Current entry requirements for both the BSc and MSci courses in Mathematics and Computer Science are: A-level grade A passes in Mathematics, Further Mathematics and one additional subject.

These requirements are subject to change as new grades and qualifications are introduced over the next few years. For up-to-date admissions requirements for this course, visit: → www.doc.ic.ac.uk/go/jmc-requirements

If your school does not offer Further Maths, you may be able to take it at a local Further Maths Network centre. Note that we also accept A-Level Maths or STEP Maths qualifications in lieu of Further Maths at A-level.

We also welcome applications from individuals with many other suitable qualifications, such as Scottish Advanced Highers, International, French and European Baccalauréats. For a list of other common international qualifications that we currently accept please see: → www.doc.ic.ac.uk/go/jmc

Applicants for admission are not judged on academic ability alone. We make assessments on a wider profile and consider your potential for success in an engineering career.

Selection process
We invite applicants who are likely to receive an offer of admission to attend an interview. The interview has two main purposes. Firstly, it gives us a chance to assess your motivation and suitability for the course. Secondly, it gives you the chance to find out more about the course and about Imperial College life in general. There will also be an opportunity to meet current students and take a tour of the campus.

You may additionally be asked to sit a short entrance test. We will use this in conjunction with your overall application and interview performance to allow us to assess your ability for the degree programme.
For further information on undergraduate Computing at Imperial College London please contact:

Undergraduate Admissions
Department of Computing
Imperial College London
South Kensington campus
London SW7 2AZ
United Kingdom

Telephone: +44 (0)20 7594 8267
Email: ugadmissions@doc.ic.ac.uk

→ www.imperial.ac.uk/computing

Credit for images used in this brochure goes to: Jeremy Bradley, Simon Colton, Uli Harder, David McBride and Stuart McRobert

To discover more about using AI to generate artistic images visit: thepaintingfool.com

Design/Print: Shanleys: 01204 523773